# **Big Data Analytics**

### Lab 1 EXTRA A – Chi-squared test





#### Let's assume the following contingency table

|         | LEFT | RIGHT | Total |
|---------|------|-------|-------|
| British | 3    | 23    | 26    |
| Italian | 32   | 5     | 37    |
| Total   | 35   | 28    | 63    |

We want to evaluate how likely it is that any observed difference between the sets arose by chance. For doing that, let's employ the Pearson's chi-squared test (Chi2)

$$X_c^2 = \sum \frac{(O-E)^2}{E}$$

where: c = degrees of freedom; O = observed frequency; E = expected frequency





What do we mean by expected frequency?

- To calculate the expected frequency for each cell of the table we have first to consider the *null hypothesis*, which in this case is that the numbers in each cell are proportionately the same in the British sample as they are in the Italian sample
- We therefore construct a parallel table in which the proportions are exactly the same for both samples How to do it?

|         | LEFT | RIGHT | Total |
|---------|------|-------|-------|
| British | 3    | 23    | 26    |
| Italian | 32   | 5     | 37    |
| Total   | 35   | 28    | 63    |

The proportions are obtained from the totals column in the previous table and are applied to the totals row

|         | E left | E right | (O-E) for<br>E left | (O-E) for<br>E right | (O-E)^2/E<br>for E left | (O-E)^2/E<br>for E<br>right |
|---------|--------|---------|---------------------|----------------------|-------------------------|-----------------------------|
| British | 14.44  | 11.56   |                     |                      |                         |                             |
| Italian | 20.55  | 16.44   |                     |                      |                         |                             |
|         |        |         |                     |                      |                         |                             |

For instance, in table above, in column (E left) (26/63) x 35=14.44; (37/63) x 35=20.55; in column (E right) (26/63) x 28 = 11.55; (37/63) x 28 = 16.44

| Chi2    | )      |         | British<br>Italian<br>Total | LEFT<br>3<br>32<br>35 | RIGHT   23   5   28 | <b>Tot</b><br>20<br>37<br>63 | 6<br>7 |                     |  |
|---------|--------|---------|-----------------------------|-----------------------|---------------------|------------------------------|--------|---------------------|--|
|         | E left | E right | (O-E) for<br>E left         | (O-E) for<br>E right  | (O-E)′<br>for E     |                              | fo     | )^2/E<br>r E<br>ght |  |
| British | 14.44  | 11.56   | -11.44                      | 11.44                 | 9.0                 | 6                            | 11.    | .33                 |  |
| Italian | 20.55  | 16.44   | 11.44                       | -11.4444              | 6.3                 | 7                            | 7.     | 96                  |  |
| Total   |        |         |                             |                       | 15.4                | 43                           | 19     | .29                 |  |

Here the  $\chi^2$  is: (15.43+19.29)=34.74

Clearly, the larger the difference between the observations and the expectations (O – E in the equation), the bigger the chisquare will be

To decide whether the difference is big enough to be statistically significant, you compare the chi-square value to a critical value (after having identified the related degree of freedom...)

| Chi2    |        |         | British<br>Italian<br>Total | LEFT<br>3<br>32<br>35 | RIGHT   23   5   28 | <b>Tot</b><br>26<br>37<br>63 | )<br>7              |    |  |
|---------|--------|---------|-----------------------------|-----------------------|---------------------|------------------------------|---------------------|----|--|
|         | E left | E right | (O-E) for<br>E left         | (O-E) for<br>E right  | (O-E)'<br>for E     |                              | (O-E)<br>for<br>rig | E  |  |
| British | 14.44  | 11.56   | -11.44                      | 11.44                 | 9.0                 | 6                            | 11.                 | 33 |  |
| Italian | 20.55  | 16.44   | 11.44                       | -11.4444              | 6.3                 | 7                            | 7.9                 | 96 |  |
| Total   |        |         |                             |                       | 15.4                | 43                           | 19.                 | 29 |  |

Here the degree of freedom is 1 (i.e., (# of columns minus 1) x (# of rows minus 1) (not counting the row and column containing the totals)

If we now look at a <u>table</u> of  $\chi^2$  distribution the probability attached to the  $\chi^2$  with 1 degree of freedom is, we find a p-value <0.001 given our 34.74 value above (i.e., we can reject the null hyp. of no relationship in a pretty confident way...)

- The textstat\_keyness command within Quanteda does a very similar exercise
- It considers: 1) in the 2 rows the target vs. the reference text; 2) in the first column the frequency of the feature we are interested about (i.e., say "American") as it appears in the two set of texts from the DfM; 3) in the second column the frequency of all the other features in the two set of texts
- It also implements, by default, a Yates correction. Basically it subtracts 0.5 from the numerator of the  $\chi^2$  formula
- This aims at correcting the error introduced by assuming (as we do with chi2) that the discrete probabilities of frequencies in the table can be approximated by a continuous (chi-squared) distribution

Finally, remember that chi2 is a *non-parametric test* 

Parametric tests use data from a sample to draw conclusions about a population, and the parameters of that population are expected to meet certain assumptions

- *Non-parametric tests* do not require assumptions about the underlying population and do not test hypotheses about population parameters
- Categorical data, and data that are not normally distributed, can be analyzed with non-parametric statistics
- After all, with categorical variables, we can't calculate a mean or standard deviation. Instead, we have just frequencies

