rm(list=ls(all=TRUE)) setwd("C:/Users/luigi/Dropbox/TOPIC MODEL") getwd() library(quanteda) library(readtext) library(caTools) library(caret) library(car) library(xgboost) library(reshape2) library(gridExtra) library(cvTools) library(Ckmeans.1d.dp) library(dplyr) ##################################################### # FIRST STEP: let's prepare the training-set ##################################################### # let's focus on MOVIE reviews (either positive or negative) x <- read.csv("train_review2.csv", stringsAsFactors=FALSE) str(x) nrow(x) table(x$Sentiment) prop.table(table(x$Sentiment)) myCorpusTwitterTrain <- corpus(x) tok2 <- tokens(myCorpusTwitterTrain, remove_punct = TRUE, remove_numbers=TRUE, remove_symbols = TRUE, split_hyphens = TRUE, remove_separators = TRUE) tok2 <- tokens_remove(tok2, stopwords("en")) tok2 <- tokens_wordstem (tok2) Dfm_train <- dfm(tok2) # Let's trim the dfm in order to keep only tokens that appear in at least 5% of the reviews Dfm_train <- dfm_trim(Dfm_train , min_docfreq = 0.05, verbose=TRUE, docfreq_type = "prop") topfeatures(Dfm_train , 20) # 20 top words train <- as.matrix(Dfm_train) ###################################################### ###################################################### # Now let's explore (let's tune!) the hyperparameters for the XGB ###################################################### ###################################################### # As we discussed, there are several hyperparameters involved in a XGB. Among the most important ones: # "eta" (learning rate: Controls how quickly the algorithm proceeds down the gradient descent. # Smaller values reduce the chance of overfitting but also increases the time to find the optimal fit, default=0.3) # "nrounds" (number of trees) - GBMs often require many trees; however, unlike random forests GBMs can overfit # so the goal is to find the optimal number of trees that minimize the loss function of interest with cross validation. # A good number of trees to begin with: 1000 # "max_depth" (maximum depth of a tree): the numbers of splits in each tree, which controls the complexity of the boosted # ensemble. Often a "max_depth"=1 works well, in which case each tree is a stump consisting of a single split. # More commonly, "max_depth" is greater than 1 but almost always <10. Default=6; # "subsample": it controls whether or not you use a fraction of the available training observations. Using less than 100% of the training observations means # you are implementing a stochastic gradient descent! For example, setting it to 0.5 means that xgboost randomly collected half of the data instances # to grow trees and this will prevent overfitting and keep from getting stuck in a local minimum or plateau of the loss function gradient. # It makes computation shorter (because less data to analyse)) and keeps from getting stuck in a local minimum or plateau # of the loss function gradient. default=1 # Other possible hyperparamaters to be considered: # colsample_bytree (subsample ratio of columns when constructing each tree): default=1 # min_child_weight = minimum sum of instance weight needed in a child. If the tree partition step results in a leaf node # with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. # The larger, the more conservative the algorithm will be. Default=1 # REMEMBER: you DV should be always a numeric one starting from 0. If it is not the case (as here) you need to create such variable x <- as.factor(Dfm_train@docvars$Sentiment) x table(x) x <- as.numeric(x) x x[ x ==1 ] <-0 x[ x ==2 ] <-1 table(x) Dfm_train@docvars$code <- x str(Dfm_train) table(Dfm_train@docvars$code) train <- as.matrix(Dfm_train) # dense matrix # create hyperparameter grid: you can add as many values and hyperparameters you want. Here just two: # eta (1 and 2) and max_depth (1 and 2) hyper_grid <- expand.grid( eta = c(0.3, 1, 2), max_depth = c(1, 2), min_error = 0 , # a place to dump results accuracy = 0 # a place to dump results ) nrow(hyper_grid) hyper_grid # A further nice feature is the early_stopping_rounds option. This allows us to tell the function to stop running if the # cross validated error does not improve for n continuous trees. # For example, the below model will stop if we see no improvement for 200 consecutive trees. # This feature will help us speed up the tuning process in the next section. # grid search for(i in 1:nrow(hyper_grid)) { # create parameter list params <- list( eta = hyper_grid$eta[i], max_depth = hyper_grid$max_depth[i] ) set.seed(123) # train model xgb.tune <- xgb.cv( params = params, data = train, label = Dfm_train@docvars$code, nrounds = 500, nfold = 10, objective = "binary:logistic", # for binary verbose = 1, # not silent, nthread = 4, metrics = "error", # binary classification error rate early_stopping_rounds = 200 # stop if no improvement for 200 consecutive trees ) # add min training error to grid hyper_grid$min_error[i] <- min(xgb.tune$evaluation_log$test_error_mean) hyper_grid$accuracy[i] <- 1-hyper_grid$min_error[i] } head(arrange(hyper_grid, min_error ), 10) ### let's add another hyperparameter such as subsample hyper_grid <- expand.grid( eta = c(0.3, 1 , 2), max_depth = c(1, 2), subsample = c(.5, 1), # that's new! min_error = 0, # a place to dump results accuracy = 0 # a place to dump results ) nrow(hyper_grid) hyper_grid # grid search for(i in 1:nrow(hyper_grid)) { # create parameter list params <- list( eta = hyper_grid$eta[i], max_depth = hyper_grid$max_depth[i], subsample = hyper_grid$subsample[i] # that's new! ) # reproducibility set.seed(123) # train model xgb.tune2 <- xgb.cv( params = params, data = train, label = Dfm_train@docvars$code, nrounds = 500, nfold = 10, objective = "binary:logistic", # for binary verbose = 1, # not silent, nthread = 4, metrics="error", # binary classification error rate early_stopping_rounds = 200 # stop if no improvement for 200 consecutive trees ) # add min training error to grid hyper_grid$min_error [i] <- min(xgb.tune2$evaluation_log$test_error_mean) hyper_grid$accuracy[i] <- 1-hyper_grid$min_error[i] } head(arrange(hyper_grid, min_error ), 10) ##################################################### # let's prepare the training-set with 3 categories (this script works fine for any number of categories>2) ##################################################### ###################################################### ###################################################### # which main changes when running an XGB? ###################################################### ###################################################### uk_train <- read.csv("uk_train.csv") str(uk_train) myCorpusTwitterTrain <- corpus(uk_train) tok2 <- tokens(myCorpusTwitterTrain, remove_punct = TRUE, remove_numbers=TRUE, remove_symbols = TRUE, split_hyphens = TRUE, remove_separators = TRUE) tok2 <- tokens_remove(tok2, stopwords("en")) tok2 <- tokens_wordstem (tok2) Dfm_train <- dfm(tok2) # Let's trim the dfm in order to keep only tokens that appear in 2 or more tweets (tweets are very short texts...) Dfm_train <- dfm_trim(Dfm_train , min_docfreq = 2, verbose=TRUE) topfeatures(Dfm_train , 20) # 20 top words train <- as.matrix(Dfm_train) # our classes table(Dfm_train@docvars$Sentiment) # our benchmark: accuracy .530 prop.table(table(Dfm_train@docvars$Sentiment)) # REMEMBER: You need always to add the number of classes to be classified in the formula if it is a multi-categorical variable like now! numberOfClasses <- length(unique(Dfm_train@docvars$Sentiment)) numberOfClasses # you DV should be always a numeric one starting from 0. If it is not the case (as here) you need to create such variable x <- as.factor(Dfm_train@docvars$Sentiment) x table(x) x <- as.numeric(x) table(x) x[ x ==1 ] <-0 x[ x ==2 ] <-1 x[ x ==3 ] <-2 # CHANGE! table(x) Dfm_train@docvars$code <- x str(Dfm_train) table(Dfm_train@docvars$code) table(Dfm_train@docvars$Sentiment) # create hyperparameter grid: you can add as many values and hyperparameters you want. Here just two: # eta (1 and 2) and max_depth (1 and 2) hyper_grid <- expand.grid( eta = c(0.3, 1, 2), max_depth = c(1, 2), min_error = 0, # a place to dump results accuracy = 0 # a place to dump results ) nrow(hyper_grid) # 4 possibilities by crossing eta with max_depth hyper_grid # grid search for(i in 1:nrow(hyper_grid)) { # create parameter list params <- list( eta = hyper_grid$eta[i], max_depth = hyper_grid$max_depth[i] ) set.seed(123) # train model xgb.tune <- xgb.cv( params = params, data = train, label = Dfm_train@docvars$code, nrounds = 500, nfold = 10, objective = "multi:softmax", # for multi-category # CHANGE! "num_class" = numberOfClasses, # add this line! # CHANGE! verbose = 1, # not silent metrics="merror", # Exact matching error, used to evaluate multi-class classification # CHANGE nthread = 4, early_stopping_rounds = 150 # stop if no improvement for 150 consecutive trees ) # add min training error to grid hyper_grid$min_error[i] <- min(xgb.tune$evaluation_log$test_merror_mean) # CHANGE: "test_merror_mean" and not "test_error_mean" hyper_grid$accuracy[i] <- 1-hyper_grid$min_error[i] } head(arrange(hyper_grid, min_error ), 10) ### also remember, if you use objective = "multi:softmax" you can directly predict classes, w/o any need to round the probabilities given that ### objective = "multi:softmax" returns predicted class (not predicated probabilities) contrary to objective = "binary:logistic"