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How to prepare a text for analysis



Our Course Map



The First Step: the preparation

Two stages:

1. Defining the corpus, acquiring the texts, choosing the 

unit of analysis

2. Preprocessing stage: defining and refining features as

well as converting textual features into a quantative

matrix



Define the corpus

Jargon: we refer to text or document as the unit of 

analysis (it could apply to any unit of text: a tweet, a 

Facebook status, press briefing, sentence, paragraph) 

We refer to the population of texts to be analyzed as the 

corpus and a collection of these as corpora



Define the corpus

A year of articles about the economy from The New York 

Times, for instance, could form a corpus for analysis, 

where the unit (text or document) of analysis is an article

A set of debates during (one of the many) votes on Brexit in 

the UK House of Commons could form another corpus, 

where the unit of analysis is a speech act (one 

intervention by a speaker on the floor of parliament)

Italia-language party election manifestos from 1948 to 2018 

could form a corpus, where a unit of analysis is a 

manifesto



Define the corpus

Defining the corpus is not irrelevant at all!

As a researcher you need to ensure that the texts under 

examination are related to the research question you 

are interest about and have theoretical consistency



Acquire the texts

The burst of interest in automated content methods is 

mainly due to the proliferation of easy-to-obtain digital 

texts 

Some of these texts are already available (for example, 

legislative speeches), other should be recollected by you 

Later on we will discuss how to retrieve data from social 

media (i.e., Twitter, possibly YouTube)

Unfortunately we won’t have time to discuss how to scrape 

data using R or how to transform audio in texts for 

example



Acquire the texts

We want to include in the corpus all relevant texts (i.e., 

minimize false negatives) and exclude any irrelevant 

texts (i.e., minimize false positives) 

For example, imagine that you want to retrieve your corpus 

from Twitter by using a list of keywords



Acquire the texts

In this case you want to generate a list of keywords 

expected to distinguish between tweets relevant to the 

topic you are interest about (say, Donald Trump) 

compared to irrelevant tweets

However, keyword searches are within the analyst’s 

control, transparent, reproducible, and portable

It is critical that the analyst pay attention to selecting 

keywords that are both relevant to the population of 

interest (given the topic you care about) and 

representative of the population of interest (i.e., not 

being too narrow and selecting only the tweets pro or 

against Donald Trump via a biased list of keywords)



Choose the unit of analysis

This step differs from the selection of the corpus in that 

prior to move on with the analysis, the unit of analysis 

may need further definition, through selection or 

sampling or by aggregating documents into larger units 

or splitting them into smaller ones

The attributes that differentiate source texts, in other words, 

may not form the ideal units for analysing the text as 

data



Choose the unit of analysis
For example, while we might have a corpus of social media 

posts, these might be better aggregated over some 

time period, such as a day, or by user

This not only ameliorates a possible problem with overly 

short documents, but also focuses attention on the unit 

of interest

Whether this is time or a user (or speaker or other unit of 

authorship) will depend on the research problem. For 

other problems, segmenting a document into smaller 

units (for example, into sentences) might be the answer



Convert the texts

The step of converting the texts into a common electronic 

format is a purely technical one, involving no research 

design decisions, but it can nonetheless poses one of 

the stickiest problems in text analysis (pdf as image…)



Preprocessing stage

But then…how to move from words to number? That is:

 how a text can be transformed into digital data so that 

an algorithm can then treat it?



Preprocessing stage
Introducing some terms…

Words as they occur in a text are commonly known as tokens, 

so that the text “one two one two” contains four tokens

Tokenization is the process of splitting a text into its 

constituent tokens

Tokenization usually happens by recognizing the delimiters 

between words, which in most languages takes the form of a 

space. In more technical language, inter-word delimiters are 

known as whitespace, and include additional machine 

characters such as newlines, tabs, and space variants

Most languages separate words by whitespace, but some 

major ones such as Chinese, Japanese, and Korean do not



Preprocessing stage

For example, Japanese sentence is only distinguished by 

commas and periods, and words are put in sequence 

without spaces in between. And so?

Tokenizing these languages requires a set of rules to 

recognize word boundaries, usually from a listing of 

common word endings

Smart tokenizers will also separate punctuation characters 

that occur immediately following a word, such as the 

comma after word in this sentence 



私は、日本社会党を代表して、当面する内外の諸問題に
つき、佐藤総理大臣にその所見をたださんとするもの
であります。

↓ after tokenization

私は、日本社会党を代表して、当面する内外の諸
問題につき、佐藤総理大臣にその所見をたださ
んとするものであります。
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Preprocessing stage



Preprocessing stage
To introduce another term, word types refer to uniquely 

occurring words

So that the text “one two one two” contains four tokens, but 

only two word types, “one” and “two”



Preprocessing stage
For a token to become a feature of textual data (our basic 

unit of analysis), it typically undergoes transformation in a 

step often called “pre-processing” 

Why such transformation is needed? Cause language is 

complex. But not all of language’s complexity is necessary 

to effectively analyze texts (REMEMBER?)

We should retain information that will be used by the 

automated methods, while discarding information that 

will likely be unhelpful, ancillary, or too complex for use in 

a statistical model

In other words: there are many forms of “words”, and these 

typically undergo a process of selection and transformation 

before they become features of our textual dataset



Preprocessing stage

Text pre-processing can be divided into two broad 

categories —noise removal & normalization



Preprocessing stage

1. Noise removal: Data components that are redundant to 

the core text analytics can be considered as noise

Such as?!?



The First Step: the preparation

Stopwords! They include the large number of prepositions, 

pronouns, conjunctions etc. in sentences such as the, is, 

at, which, and on in English that occur in the greatest 

frequency in natural language texts 

These words can be considered unlikely to contribute useful 

information for analysis, adding little specific political 

meaning to the text

However…



The First Step: the preparation
…the pronoun “her”, as Monroe, Quinn and Colaresi

(2008) found, has a decidedly partisan orientation in 

debates on abortion in the U.S. Senate

For these reasons, when preparing textual data for 

analysis, always check the impact on your final results of 

eliminating or not stopwords…



The First Step: the preparation

We also typically discard: 

 Punctuation

 Capitalization: we apply lower-casing, which treats 

words as equivalent regardless of how they were 

capitalised

 We can also decide to eliminate words through the use 

of predefined lists of words to be ignored (for 

example: tags, URLs, etc.) or based on their relative 

infrequency (words that appear only once or twice in 

the corpus are unlikely to be discriminating)



The First Step: the preparation

2. Normalization: Handling multiple occurrences / 

representations of the same word is called 

normalization

There are two types of normalization: stemming and 

lemmatization



The First Step: the preparation

Stemming normalizes text by reducing words to their stems, 

which is a cruder algorithmic means of equating a word 

with its canonical (dictionary) form, i.e., stemming treats 

words as equivalent when they differ only in their 

inflected forms

For example, the different words taxes, tax, taxation, taxing, 

taxed, and taxable are all converted to their word stem 

“tax”



The First Step: the preparation

By doing that, stemming reduce the total number of unique 

words in the data set

Stemming



The First Step: the preparation

Lemmatization is a more advanced technique which works 

based on the root of the word taking into consideration 

the morphological analysis of the words

To do so, it is necessary to have detailed dictionaries which 

the algorithm can look through to link the form back to its 

lemma



The First Step: the preparation

Stemming

Lemmatization



The First Step: the preparation

In our analysis, we also discard the order in which words 

occur in documents, i.e., we assume that documents are 

a bag of words, where order does not inform our 

analyses

Is it a problem? 

For instance, the expressions ‘We are against lowering 

taxes, and for tax increases’ and ‘We are for lowering 

taxes, and against tax increases’ use the exact same 

words, even though the meaning is reversed



The First Step: the preparation

While it is easy to construct sample sentences where word 

order fundamentally changes the nature of the sentence, 

empirically these sentences are rare

As a result, a simple list of words, which we call unigrams, 

is often sufficient to convey the general meaning of a text



The First Step: the preparation

We can also retain some word-order by including bigrams

(word pairs, for example to distinguish the “White House” 

from the color and the domicile) or any other (defined as 

sequences of n consecutive tokens to form not words but 

phrases) 

This is a brute force method of recovering politically 

meaningful multi-word expressions that might contain 

identical unigrams but as phrases, mean exact opposites, 

such as economy in the multi-word expressions 

“command economy” and “market economy”

In practice, for common tasks, n-grams do little to improve 

the performance of text analysis



The First Step: the preparation

The result of the preprocessing steps is that each 

document can be represented as a vector that counts

the number of times each of the unique words occur in 

each document 

This the bag-of-words approach!

Multiple document vectors are then put together in a 

document-term matrix (or document-feature matrix), 

where each row represents a document and each 

column represents a unique word, or term



The First Step: the preparation

The matching between row and column will report either 

the frequency of that word in that document (as 

discussed above)….

….or alternatively a list of 0/1: where 0 if that word is not 

present in that document and 1 viceversa

This latter procedure is called one-hot-encoding 

We will mainly deal with the former procedure - but not 

only: for example, a one-hot-encoding could be 

advisable given very short texts (such as tweets)





The First Step: the preparation

This matrix form of textual data can then be used as input 

into a variety of analytical methods for describing the 

texts

Quantitative text analysis thus moves textual data into 

the same domain as other types of quantitative data 

analysis, making it possible to bring to bear well-tested 

statistical and machine learning tools of analysis and 

prediction



The First Step: the preparation

Ironically, generating insight from text as data is only 

possible once we have destroyed our ability to make 

sense of the texts directly

To make it useful as data, we had to obliterate the 

structure of the original text and turn its stylised and 

oversimplified features into a glorified spreadsheet that 

no reader can interpret directly, no matter how expert in 

linear algebra



The First Step: the preparation

We should not lose any sleep over it, because the point in 

analysing text as data was never to interpret the data 

but rather to mine it for patterns

(text) Mining is a destructive process  - just ask any 

mountain! - and some destruction is inevitable in order to 

extract its valuable resources

And consistently across applications, scholars have shown 

that a simple representation of text such as the one we 

get via a bag-of-words approach is sufficient to infer 

substantively interesting properties of texts!



The First Step: the preparation

This approach also discards much linguistic information 

regarding the surrounding syntactic and semantic 

context of a given word in a sentence. 

Of course, in some contexts bringing back the context in 

which a word appears, can be very important…

For example, a bag-of-words assumption is that each word 

is independently generated from some underlying 

distribution

The problem is that speeches and other texts typically have 

a large number of words that are not actually 

independently generated (i.e., they come together!)

How to deal with that?



The First Step: the preparation

“You shall know a word by the company it keeps” (John 

Firth, 1957)

Word embeddings! 

It’s a means of building a low-dimensional vector 

representation from corpus of text, which preserves the 

contextual similarity of words

Methods that can retain this kind of information are able to 

use this information to increase classification accuracy

If we have time, we will discuss about word embedding 

later on



The First Step: the preparation

Thinking about the number of words every language is 

made of, one might think that the document-term matrix 

might possess a huge number of columns in any given 

analysis

For instance, the Oxford English Dictionary classifies more 

than 650,000 words

What turns out to be true is that, after stemming, the typical 

length of the stem vector (i.e., the number of columns) is 

no more than 300 or 500 and often much less



The First Step: the preparation

The main dimension that increases the computational 

challenge is, on the contrary, quite often the number of 

rows of the matrix, that is the number of texts to be 

analyzed

This number is usually in the order of millions in social 

media analysis for example

Still, regardless of the number of columuns, you could still

have a problem of sparsity (?!?)



The First Step: the preparation

In text mining, huge matrices are created based on word 

frequencies with many cells having zero values 

This problem is precisely what we call sparsity



The First Step: the preparation

In this sense, document-term matrices are affected by what 

is known in machine learning as the curse of 

dimensionality: new observations tend to grow the 

feature set, and each new term found in even a 

document adds a new column to the matrix

The challenge in this sense is how to store a sparse matrix 

in a clever way (w/o all those 0s!) so that it occupies less 

space



The First Step: the preparation

Several of the pre-processing techniques just discussed 

allows to further minimize the sparsity problems

But several others are still available (i.e., the CSR (the 

compressed sparse row) approach for example)

One further strategy for mitigating the problem of 

exponentially increasing dimensionality is to trim or to 

weight the document-feature(term) matrix



The First Step: the preparation

Trimming can be done on various criteria, but usually 

takes the form of a filter based on some form of feature 

frequency (i.e., keeping only features that appear just in 

10% of documents for example)



The First Step: the preparation

Weighting schemes convert a matrix of counts into a 

matrix of weights

The most common of these is relative term frequency, a 

weighting process also known as document 

normalisation because it homogenises the sum of the 

counts for each document

Since documents in a typical corpus vary in length, this 

provides a method for comparing frequencies more 

directly than counts, which are inflated in longer 

documents 



The First Step: the preparation

Words may also be weighted according to how rare or 

frequent they are in the corpus via a tf-idf (term 

frequency-inverse document frequency) matrix 

tf-idf is a method in information retrieval for down-weighting 

the terms that are common to documents 

tf-idf adds a weight that approaches zero as the number of 

documents in which a term appears (in any frequency) 

approaches the number of documents in the collection. 

When we have selected our texts because they pertain 

to a specific topic  - as we usually will - then inverse 

document frequency weighting means zeroing out most 

of our topical words, since these will appear in most or 

all documents



The First Step: the preparation

In  texts of debates over health care, for instance, tf-idf

weighting is likely to eliminate all words related to health 

care, even when they might occur at very different rates 

across different documents

Note that if we think that it is not the occurrence, but rather 

the relative frequencies of words that are informative, 

then using tf-idf weighting is the opposite of what we 

want!!!



The First Step: the preparation

Note that many models commonly used in political science 

- such as the Wordfish model or topic models that we will 

see later on - only work with counts as inputs, so that tf-

idf or other weighting schemes are inapplicable



The First Step: the preparation

Never underestimate the power of the preprocessing 

stage! 

Preprocessing has tremendous consequences for the 

quality of automated text analysis



The First Step: the preparation
In one of the few systematic studies of feature processing 

choices and their consequences, Denny and Spirling

(2018) replicated several published text analyses from 

political science using a variety of alternative feature 

processing steps

Their results shows that “under relatively small 

perturbations of of preprocessing decisions...very 

different substantive interpretations would emerge” 

Researchers in practice should be aware of these 

decisions, critically examine the assumptions of their 

methods and how these relate to feature selection, and 

test the robustness of these results



Statistical summaries

Once you have your DtM, you can start by running some 

statistical summaries

Statistical summary methods are essentially quantitative 

summaries of texts to describe their characteristics on 

some indicator, and may use (or not) statistical methods 

based on sampling theory for comparison



Statistical summaries (1)

The simplest such measures identify the most commonly 

occurring words, and summarize these as frequency 

distributions

For example: tag clouds! A tag cloud is a visual 

representation of text data, in which tags are single 

words whose frequency is shown with different font size 

(and/or color)



Tag-cloud of the tweets posted in 

@realDonaldTrump during the last 2 months of 

the electoral campaign

https://twitter.com/realDonaldTrump


Comparing tag-clouds! The US Presidential

inaugural speeches example



Statistical summaries (2)
Other quantitative summary measures of documents are 

designed to characterize specific qualities of texts 

Comparing the rates of types and tokens forms the 

foundation for measures of lexical diversity (the rate of 

vocabulary usage), with most common such measure 

comparing the number of types to the number of tokens 

(the “type-token ratio”)

For example, it is argued that populist communication 

means simplified political discourse (lower diversity), in 

an attempt to reach the public more easily



So different, yet so alike (to 

Donald Trump?)



Statistical summaries (3)

More sophisticated methods compare the differential 

occurrences of words across texts or partitions of a 

corpus, using statistical association measures, to identify 

the words that belong primarily to sub-groups such 

as those predominantly associated with male- versus 

female - authored documents, or Democratic versus 

Republican speeches



Statistical summaries (4)

Interesting descriptive statistics can also be produced 

directly by working with the corpus, rather than with the 

DtM

This allows us to retain the original text sequence, and 

therefore, for example, to detect both the relative 

frequency of an employed word across documents 

as well as the “timing” of that word via a Lexical 

dispersion plot 



Inaugural Speeches by US Presidents

american
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Before our first Lab class

If you have a laptop with you (you need around 20 mins):

1) Install the latest version of R 

2) For Windows platforms: install the latest version of 

Rtools (i.e., Rtools 4) from here (https://cran.r-

project.org/bin/windows/Rtools/) 

3) For OS X, do the following:

a) First try to install Quanteda directly

b) If you fail in doing that, install XCode from the App Store

https://cran.r-project.org/bin/windows/Rtools/
https://itunes.apple.com/gb/app/xcode/id497799835?mt=12


Before our first Lab class
c) To install XCode, follow these simple rules:

1 Access to “Apple Developer”

https://developer.apple.com/download/more/

(You need Apple ID and password)

2 Insert “Xcode” in “Search Downloads” located on the left side 

of the page.

3 Choose “Xcode 12” and download.

4 After finishing download, click "Finder" and then "download." 

Double click “Xcode 12”. It may take a while to open this file

d) If you have problems to install the latest version of 

Xcode, uses an earlier one, such as Xcode 9!



Before our first Lab class

Install the following packages by running these lines: 

install.packages('devtools', repos='http://cran.us.r-project.org')

install.packages('quanteda', repos='http://cran.us.r-project.org')

install.packages('readtext', repos='http://cran.us.r-project.org')

install.packages('ggplot2', repos='http://cran.us.r-project.org')

install.packages('stopwords', repos='http://cran.us.r-

project.org')

install.packages('wordcloud', repos='http://cran.us.r-

project.org')

install.packages(‘shiny', repos='http://cran.us.r-project.org')

devtools::install_github("quanteda/quanteda.corpora")


