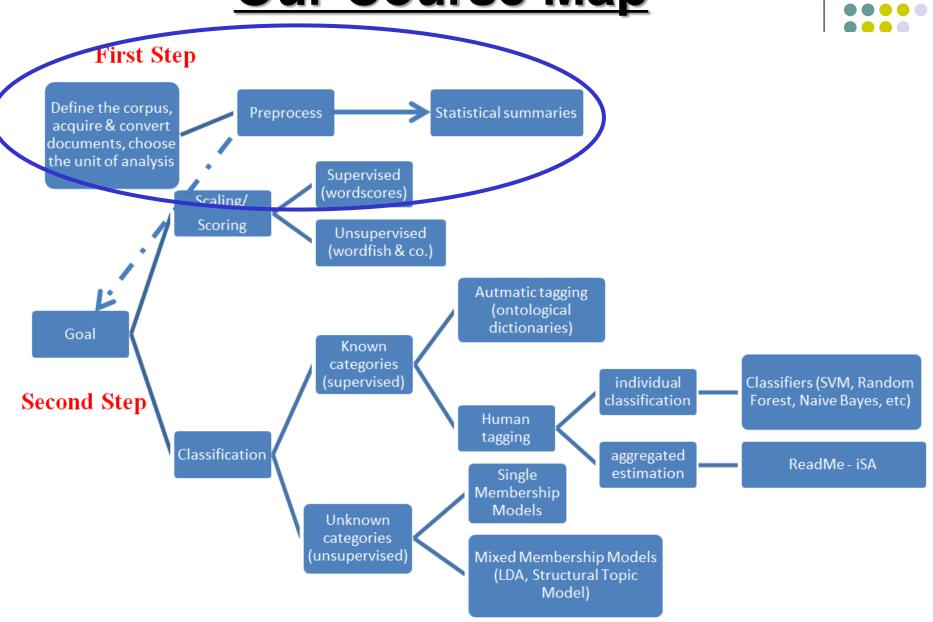
Applied Scaling & Classification Techniques in Political Science

Lecture 1 (second part) How to prepare a text for analysis

<u>Our Course Map</u>



Two stages:

- 1. Defining the corpus, acquiring the texts, choosing the unit of analysis
- 2. Preprocessing stage: defining and refining features as well as converting textual features into a quantative matrix

Define the corpus

Jargon: we refer to *text* or *document* as the **unit of** analysis (it could apply to any unit of text: a tweet, a Facebook status, press briefing, sentence, paragraph)

We refer to the population of texts to be analyzed as the corpus and a collection of these as corpora

Define the corpus

- A year of articles about the economy from The New York Times, for instance, could form a **corpus** for analysis, where the **unit** (text or document) of analysis is an article
- A set of debates during (one of the many) votes on Brexit in the UK House of Commons could form another **corpus**, where the **unit** of analysis is a speech act (one intervention by a speaker on the floor of parliament)
- Italia-language party election manifestos from 1948 to 2018 could form a **corpus**, where a **unit** of analysis is a manifesto

Define the corpus

Defining the corpus is not irrelevant at all!

As a researcher you need to ensure that the texts under examination are related to the **research question you are interest about** and have **theoretical consistency**

Acquire the texts

- The burst of interest in automated content methods is mainly due to the proliferation of **easy-to-obtain** digital texts
- Some of these texts are already available (for example, legislative speeches), other should be recollected by you
- Later on we will discuss how to retrieve data from social media (i.e., Twitter, possibly YouTube)
- Unfortunately we won't have time to discuss how to scrape data using R or how to transform audio in texts for example

Acquire the texts

We want **to include** in the corpus all relevant texts (i.e., *minimize false negatives*) and **exclude** any irrelevant texts (i.e., *minimize false positives*)

For example, imagine that you want to retrieve your corpus from Twitter by using a list of keywords

Acquire the texts

In this case you want to generate a list of keywords expected to distinguish between tweets relevant to the topic you are interest about (say, *Donald Trump*) compared to irrelevant tweets

- However, **keyword searches** are within the analyst's control, transparent, reproducible, and portable
- It is critical that the analyst pay attention to selecting keywords that are both relevant to the population of interest (given the topic you care about) and representative of the population of interest (i.e., not being too narrow and selecting only the tweets pro or against Donald Trump via a biased list of keywords)

Choose the unit of analysis

- This step differs from the selection of the corpus in that prior to move on with the analysis, the unit of analysis may need further definition, through selection or sampling or by aggregating documents into larger units or splitting them into smaller ones
- The attributes that differentiate source texts, in other words, may not form the ideal units for analysing the text as data

Choose the unit of analysis

For example, while we might have a corpus of social media posts, these might be **better aggregated** over some time period, such as a day, or by user

This not only ameliorates a possible problem with overly short documents, but also focuses attention on the **unit of interest**

Whether this is time or a user (or speaker or other unit of authorship) will depend on the research problem. For other problems, segmenting a document into smaller units (for example, into sentences) might be the answer

Convert the texts

The step of converting the texts into a common electronic format is a purely technical one, involving no research design decisions, but it can nonetheless poses one of the stickiest problems in text analysis (pdf as image...)

But then...how to move from words to number? That is:

how a text can be transformed into digital data so that an algorithm can then treat it?

Introducing some terms...

Words as they occur in a text are commonly known as **tokens**, so that the text "*one two one two*" contains four tokens

- **Tokenization** is the process of **splitting a text** into its constituent tokens
- Tokenization usually happens by recognizing the delimiters between words, which in most languages takes the form of a space. In more technical language, inter-word delimiters are known as **whitespace**, and include additional machine characters such as newlines, tabs, and space variants
- Most languages separate words by whitespace, but some major ones such as Chinese, Japanese, and Korean do not

For example, Japanese sentence is only distinguished by commas and periods, and words are put in sequence without spaces in between. And so?

- **Tokenizing** these languages requires a set of rules to recognize word boundaries, usually from a listing of common word endings
- Smart tokenizers will also separate punctuation characters that occur immediately following a word, such as the comma after word in this sentence

私は、日本社会党を代表して、当面する内外の諸問題に つき、佐藤総理大臣にその所見をたださんとするもの であります。

↓ after tokenization

私_は_、_日本_社会党_を_代表_し_て_、_当面_する 内外_の_諸 問題_に_つき_、_佐藤_総理_大臣_に_その_所見_を_たださ ん_と_する_もの_で_あり_ます_。

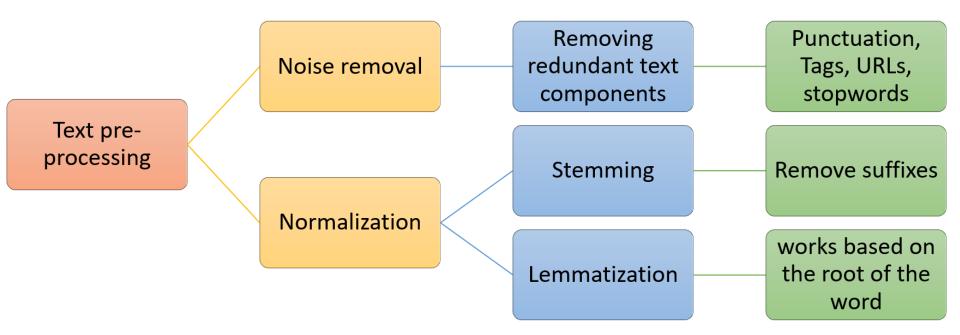
To introduce another term, **word types** refer to uniquely occurring words

So that the text "one two one two" contains four tokens, but only two word types, "one" and "two"

For a **token** to become a **feature** of textual data (our basic unit of analysis), it typically undergoes transformation in a step often called "pre-processing"

- Why such transformation is needed? Cause language is **complex**. But not all of language's complexity is necessary to effectively analyze texts (REMEMBER?)
- We should **retain information** that will be used by the automated methods, **while discarding information** that will likely be unhelpful, ancillary, or too complex for use in a statistical model
- In other words: there are many forms of "words", and these typically undergo a process of selection and transformation before they become **features** of our textual dataset

Text pre-processing can be divided into two broad categories—**noise removal & normalization**



1. Noise removal: Data components that are redundant to the core text analytics can be considered as noise Such as?!?

- **Stopwords!** They include the large number of prepositions, pronouns, conjunctions etc. in sentences such as *the, is, at, which,* and *on* in English that occur in the greatest frequency in natural language texts
- These words can be considered **unlikely** to contribute useful information for analysis, adding little specific political meaning to the text

However...

...the pronoun "**her**", as Monroe, Quinn and Colaresi (2008) found, has a decidedly partisan orientation in debates on abortion in the U.S. Senate

For these reasons, when preparing textual data for analysis, always check the impact on your final results of eliminating or not stopwords...

We also typically discard:

- Punctuation
- Capitalization: we apply lower-casing, which treats words as equivalent regardless of how they were capitalised
- We can also decide to eliminate words through the use of predefined lists of words to be ignored (for example: tags, URLs, etc.) or based on their relative infrequency (words that appear only once or twice in the corpus are unlikely to be discriminating)

- 2. Normalization: Handling multiple occurrences / representations of the same word is called normalization
- There are two types of normalization: **stemming** and **lemmatization**

Stemming normalizes text by reducing words to their stems, which is a cruder algorithmic means of equating a word with its canonical (dictionary) form, i.e., stemming treats words as equivalent when they differ only in their inflected forms

For example, the different words *taxes, tax, taxation, taxing, taxed, and taxable* are all converted to their word stem "**tax**"

Form	Suffix	Stem	
studi <mark>es</mark>	-es	studi	 Stemming
study <mark>ing</mark>	-ing	study	
niñ <mark>as</mark>	-as	niñ	
niñ <mark>ez</mark>	-ez	niñ	

By doing that, stemming reduce the total number of unique words in the data set

Lemmatization is a more advanced technique which works based on the root of the word taking into consideration the morphological analysis of the words

To do so, it is necessary to have detailed dictionaries which the algorithm can look through to link the form back to its lemma

Form	Suffix	Stem	
studi <mark>es</mark>	-es	studi	> Stemming
stud <mark>ying</mark>	-ing	study	
niñ <mark>as</mark>	-as	niñ	
niñ <mark>ez</mark>	-ez	niñ	

Form	Morphological information	Lemma
	Third person, singular number, present tense of	
studies	the verb <mark>study</mark>	study
studying	Gerund of the verb <mark>study</mark>	study
niñas	Feminine gender, plural number of the noun niño	niño
niñez	Singular number of the noun niñez	niñez

In our analysis, we also discard the order in which words occur in documents, i.e., we assume that documents are a **bag of words**, where order does not inform our analyses

Is it a problem?

For instance, the expressions 'We are against lowering taxes, and for tax increases' and 'We are for lowering taxes, and against tax increases' use the exact same words, even though the meaning is reversed

While it is easy to construct sample sentences where word order fundamentally changes the nature of the sentence, empirically these sentences are rare

As a result, a simple list of words, which we call **unigrams**, is often sufficient to convey the general meaning of a text

We can also *retain some word-order* by including **bigrams** (word pairs, for example to distinguish the "White House" from the color and the domicile) or any other (defined as sequences of n consecutive tokens to form not words but phrases)

This is a brute force method of recovering politically meaningful multi-word expressions that might contain identical unigrams but as phrases, mean exact opposites, such as economy in the multi-word expressions *"command economy"* and *"market economy"*

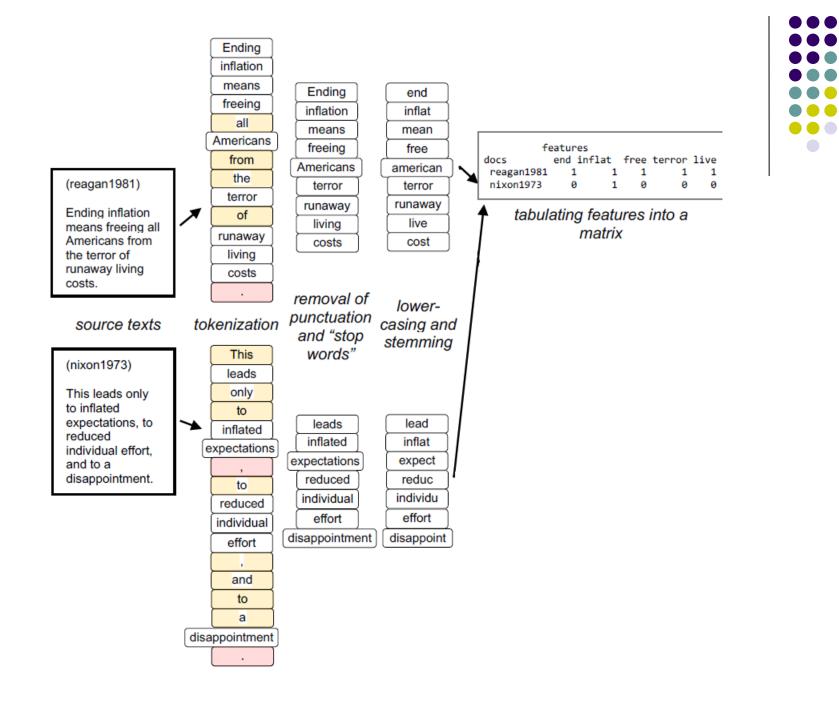
In practice, for common tasks, n-grams do little to improve the performance of text analysis

The result of the *preprocessing steps* is that each document can be represented as a **vector that counts** the number of times each of the unique words occur in each document

This the bag-of-words approach!

Multiple document vectors are then put together in a document-term matrix (or document-feature matrix), where each row represents a document and each column represents a unique word, or term

- The matching between row and column will report either the frequency of that word in that document (as discussed above)....
-or alternatively a list of 0/1: where 0 if that word is not present in that document and 1 viceversa
- This latter procedure is called **one-hot-encoding**
- We will mainly deal with the former procedure but not only: for example, a one-hot-encoding could be advisable given very short texts (such as tweets)



- This matrix form of textual data can then be used as input into a variety of **analytical methods** for describing the texts
- Quantitative text analysis thus moves textual data into the same domain as other types of quantitative data analysis, making it possible to bring to bear well-tested statistical and machine learning tools of analysis and prediction

Ironically, generating insight from text as data is only possible **once we have destroyed** our ability to make sense of the texts directly

To make it useful as data, we had to **obliterate the structure of the original text and turn its stylised and oversimplified features** into a glorified spreadsheet that no reader can interpret directly, no matter how expert in linear algebra

We should not lose any sleep over it, because the point in analysing text as data was **never to interpret the data but rather to mine it for patterns**

(text) Mining is a destructive process - just ask any mountain! - and some destruction is inevitable in order to extract its valuable resources

And consistently across applications, scholars have shown that a simple representation of text such as the one we get via a bag-of-words approach is sufficient to infer substantively interesting properties of texts!

This approach also discards much linguistic information regarding the **surrounding syntactic and semantic context** of a given word in a sentence.

- Of course, in some contexts bringing back the context in which a word appears, can be very important...
- For example, a bag-of-words assumption is that each word is independently generated from some underlying distribution
- The problem is that speeches and other texts typically have a large number of words **that are not actually independently generated** (i.e., they come together!) How to deal with that?

"You shall know a word by the company it keeps" (John Firth, 1957)

Word embeddings!

It's a means of building a low-dimensional vector representation from corpus of text, which preserves the contextual similarity of words

Methods that can retain this kind of information are able to use this information to increase classification accuracy

If we have time, we will discuss about word embedding later on

Thinking about the number of words every language is made of, one might think that the document-term matrix might possess a **huge number of columns** in any given analysis

For instance, the *Oxford English Dictionary* classifies more than 650,000 words

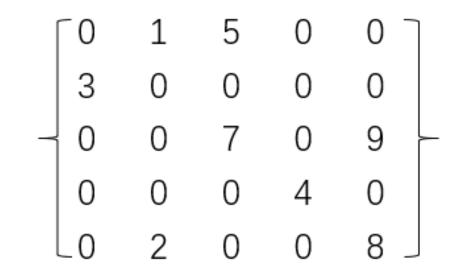
What turns out to be true is that, after stemming, the typical length of the stem vector (i.e., the number of columns) is no more than 300 or 500 and often much less

The main dimension that increases the computational challenge is, on the contrary, quite often the number of rows of the matrix, that is the number of texts to be analyzed

- This number is usually in the **order of millions** in social media analysis for example
- Still, regardless of the number of columuns, you could still have a **problem of sparsity** (?!?)

In text mining, huge matrices are created based on word frequencies with many cells having zero values

This problem is precisely what we call sparsity



In this sense, document-term matrices are affected by what is known in machine learning as the **curse of dimensionality**: new observations tend to grow the feature set, and each new term found in even a document adds a new column to the matrix

The challenge in this sense is how to store a sparse matrix in a clever way (w/o all those 0s!) so that it occupies less space

Several of the pre-processing techniques just discussed allows to further minimize the sparsity problems

- But several others are still available (i.e., the CSR (the compressed sparse row) approach for example)
- One further strategy for mitigating the problem of exponentially increasing dimensionality is to **trim** or to **weight** the document-feature(term) matrix

Trimming can be done on various criteria, but usually takes the form of a filter based on some form of feature frequency (i.e., keeping only features that appear just in 10% of documents for example)

Weighting schemes convert a matrix of counts into a matrix of weights

The most common of these is **relative term frequency**, a weighting process also known as document normalisation because it homogenises the sum of the counts for each document

Since documents in a typical corpus vary in length, this provides a method for comparing frequencies more directly than counts, which are inflated in longer documents

Words may also be weighted according to how rare or frequent they are in the corpus via a *tf-idf* (term frequency-inverse document frequency) matrix

- tf-idf is a method in information retrieval for down-weighting the terms that are common to documents
- tf-idf adds a weight that approaches zero as the number of documents in which a term appears (in any frequency) approaches the number of documents in the collection. When we have selected our texts because they pertain to a specific topic - as we usually will - then inverse document frequency weighting means **zeroing out most of our topical words**, since these will appear in most or all documents

- In texts of debates over **health care**, for instance, tf-idf weighting is likely to eliminate all words related to health care, even when they might occur at very different rates across different documents
- Note that if we think that it is not the occurrence, but rather the **relative frequencies** of words that are informative, then using tf-idf weighting is the opposite of what we want!!!

Note that many models commonly used in political science - such as the Wordfish model or topic models that we will see later on - only work with counts as inputs, so that tfidf or other weighting schemes are inapplicable

Never underestimate the *power* of the preprocessing stage!

Preprocessing has tremendous consequences for the quality of automated text analysis

In one of the few systematic studies of feature processing choices and their consequences, Denny and Spirling (2018) replicated several published text analyses from political science using a variety of alternative feature processing steps

Their results shows that "under relatively small perturbations of of preprocessing decisions...very different substantive interpretations would emerge"

Researchers in practice should be aware of these decisions, critically examine the assumptions of their methods and how these relate to feature selection, and test the robustness of these results

Statistical summaries

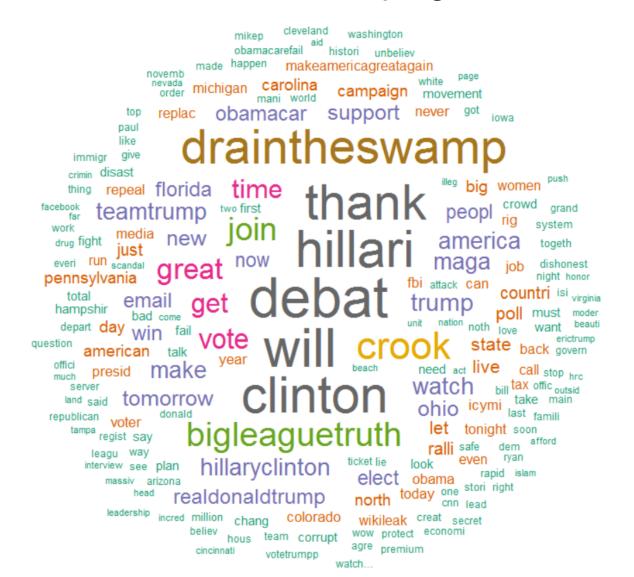
Once you have your DtM, you can start by running some statistical summaries

Statistical summary methods are essentially quantitative summaries of texts to describe their characteristics on some indicator, and may use (or not) statistical methods based on sampling theory for comparison

Statistical summaries (1)

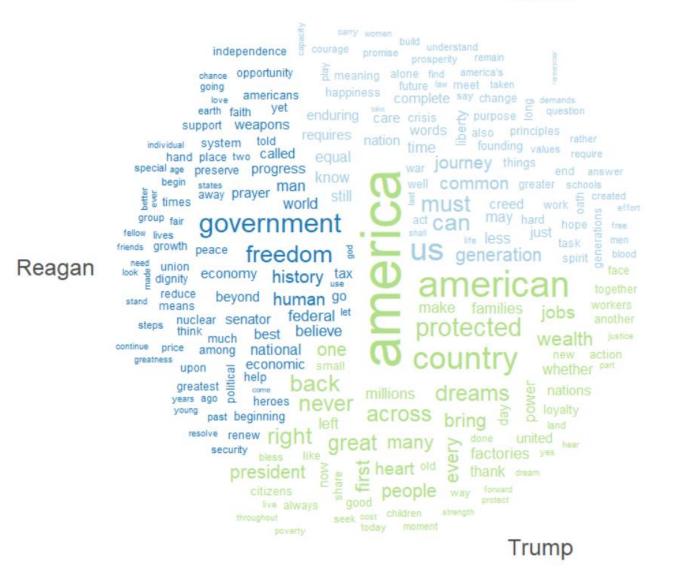
- The simplest such measures identify the most commonly occurring words, and summarize these as frequency distributions
- For example: **tag clouds**! A tag cloud is a visual representation of text data, in which tags are single words whose frequency is shown with different font size (and/or color)

Tag-cloud of the tweets posted in <u>@realDonaldTrump</u> during the last 2 months of the electoral campaign



Comparing tag-clouds! The US Presidential inaugural speeches example

Obama

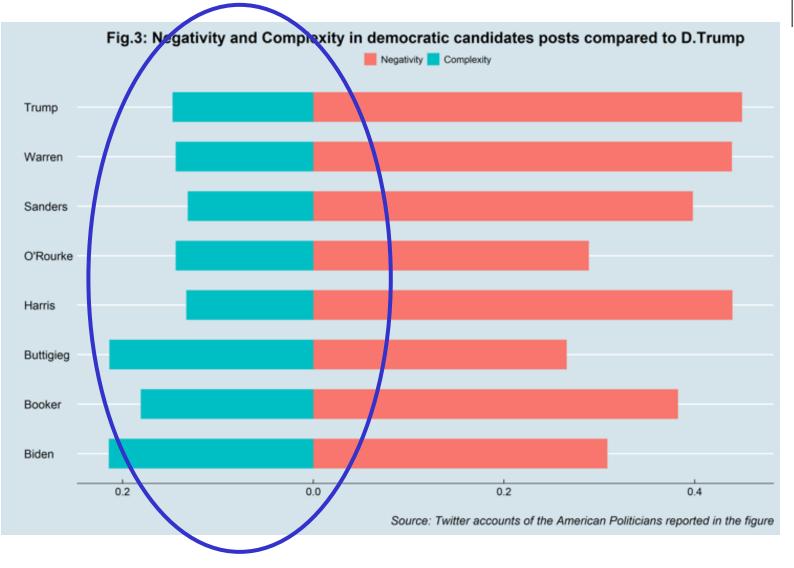


Statistical summaries (2)

Other quantitative summary measures of documents are designed to characterize specific qualities of texts

- Comparing the **rates of types and tokens** forms the foundation for measures of **lexical diversity** (the rate of vocabulary usage), with most common such measure comparing the number of types to the number of tokens (the "type-token ratio")
- For example, it is argued that populist communication means simplified political discourse (lower diversity), in an attempt to reach the public more easily

So different, yet so alike (to Donald Trump?)



Statistical summaries (3)

More sophisticated methods **compare the differential occurrences of words across texts** or partitions of a corpus, using statistical association measures, to identify the **words that belong primarily to sub-groups** such as those predominantly associated with male- versus female - authored documents, or Democratic versus Republican speeches

Statistical summaries (4)

Interesting descriptive statistics can also be produced directly by working with the corpus, rather than with the DtM

This allows us to retain the original text sequence, and therefore, for example, to detect both **the relative frequency of an employed word across documents as well as the "timing" of that word** via a *Lexical dispersion plot*

Inaugural Speeches by US Presidents

Lexical dispersion plot

Document	american	
		1949-Truman
		1953-Eisenhower
		1957-Eisenhower
		1965-Johnson
		1969-Nixon
		1973-Nixon
		1977-Carter
		1981-Reagan
		1985-Reagan
		1989-Bush
		1993-Clinton
		1997-Clinton
		2001-Bush
		2005-Bush
		2009-Obama
		2013-Obama
		2017-Trump
	0.00 0.25 0.50 0.75 1.00 Relative token index	

Before our first Lab class

If you have a laptop with you (you need around 20 mins):

- 1) Install the latest version of R
- For Windows platforms: install the latest version of Rtools (i.e., Rtools 4) from here (<u>https://cran.r-</u> project.org/bin/windows/Rtools/)
- 3) For **OS X**, do the following:
- a) First try to install Quanteda directly
- b) If you fail in doing that, install XCode from the App Store

Before our first Lab class

- c) To install XCode, follow these simple rules:
- 1 Access to "Apple Developer"

https://developer.apple.com/download/more/

- (You need Apple ID and password)
- 2 Insert "Xcode" in "Search Downloads" located on the left side of the page.
- 3 Choose "Xcode 12" and download.
- 4 After finishing download, click "Finder" and then "download." Double click "Xcode 12". It may take a while to open this file
- d) If you have problems to install the **latest version** of Xcode, **uses an earlier one**, such as Xcode 9!

Before our first Lab class

Install the following packages by running these lines: *install.packages('devtools', repos='http://cran.us.r-project.org') install.packages('quanteda', repos='http://cran.us.r-project.org') install.packages('readtext', repos='http://cran.us.r-project.org') install.packages('ggplot2', repos='http://cran.us.r-project.org') install.packages('stopwords', repos='http://cran.us.r-project.org') install.packages('stopwords', repos='http://cran.us.r-project.org')*

install.packages('wordcloud', repos='http://cran.us.rproject.org')

install.packages('shiny', repos='http://cran.us.r-project.org') devtools::install_github("quanteda/quanteda.corpora")