
Applied Scaling &

Classification Techniques

in Political Science

Lecture 1 (second part)

How to prepare a text for analysis

Our Course Map

The First Step: the preparation

Two stages:

1. Defining the corpus, acquiring the texts, choosing the

unit of analysis

2. Preprocessing stage: defining and refining features as

well as converting textual features into a quantative

matrix

Define the corpus

Jargon: we refer to text or document as the unit of

analysis (it could apply to any unit of text: a tweet, a

Facebook status, press briefing, sentence, paragraph)

We refer to the population of texts to be analyzed as the

corpus and a collection of these as corpora

Define the corpus

A year of articles about the economy from The New York

Times, for instance, could form a corpus for analysis,

where the unit (text or document) of analysis is an article

A set of debates during (one of the many) votes on Brexit in

the UK House of Commons could form another corpus,

where the unit of analysis is a speech act (one

intervention by a speaker on the floor of parliament)

Italia-language party election manifestos from 1948 to 2018

could form a corpus, where a unit of analysis is a

manifesto

Define the corpus

Defining the corpus is not irrelevant at all!

As a researcher you need to ensure that the texts under

examination are related to the research question you

are interest about and have theoretical consistency

Acquire the texts

The burst of interest in automated content methods is

mainly due to the proliferation of easy-to-obtain digital

texts

Some of these texts are already available (for example,

legislative speeches), other should be recollected by you

Later on we will discuss how to retrieve data from social

media (i.e., Twitter, possibly YouTube)

Unfortunately we won’t have time to discuss how to scrape

data using R or how to transform audio in texts for

example

Acquire the texts

We want to include in the corpus all relevant texts (i.e.,

minimize false negatives) and exclude any irrelevant

texts (i.e., minimize false positives)

For example, imagine that you want to retrieve your corpus

from Twitter by using a list of keywords

Acquire the texts

In this case you want to generate a list of keywords

expected to distinguish between tweets relevant to the

topic you are interest about (say, Donald Trump)

compared to irrelevant tweets

However, keyword searches are within the analyst’s

control, transparent, reproducible, and portable

It is critical that the analyst pay attention to selecting

keywords that are both relevant to the population of

interest (given the topic you care about) and

representative of the population of interest (i.e., not

being too narrow and selecting only the tweets pro or

against Donald Trump via a biased list of keywords)

Choose the unit of analysis

This step differs from the selection of the corpus in that

prior to move on with the analysis, the unit of analysis

may need further definition, through selection or

sampling or by aggregating documents into larger units

or splitting them into smaller ones

The attributes that differentiate source texts, in other words,

may not form the ideal units for analysing the text as

data

Choose the unit of analysis
For example, while we might have a corpus of social media

posts, these might be better aggregated over some

time period, such as a day, or by user

This not only ameliorates a possible problem with overly

short documents, but also focuses attention on the unit

of interest

Whether this is time or a user (or speaker or other unit of

authorship) will depend on the research problem. For

other problems, segmenting a document into smaller

units (for example, into sentences) might be the answer

Convert the texts

The step of converting the texts into a common electronic

format is a purely technical one, involving no research

design decisions, but it can nonetheless poses one of

the stickiest problems in text analysis (pdf as image…)

Preprocessing stage

But then…how to move from words to number? That is:

 how a text can be transformed into digital data so that

an algorithm can then treat it?

Preprocessing stage
Introducing some terms…

Words as they occur in a text are commonly known as tokens,

so that the text “one two one two” contains four tokens

Tokenization is the process of splitting a text into its

constituent tokens

Tokenization usually happens by recognizing the delimiters

between words, which in most languages takes the form of a

space. In more technical language, inter-word delimiters are

known as whitespace, and include additional machine

characters such as newlines, tabs, and space variants

Most languages separate words by whitespace, but some

major ones such as Chinese, Japanese, and Korean do not

Preprocessing stage

For example, Japanese sentence is only distinguished by

commas and periods, and words are put in sequence

without spaces in between. And so?

Tokenizing these languages requires a set of rules to

recognize word boundaries, usually from a listing of

common word endings

Smart tokenizers will also separate punctuation characters

that occur immediately following a word, such as the

comma after word in this sentence

私は、日本社会党を代表して、当面する内外の諸問題に
つき、佐藤総理大臣にその所見をたださんとするもの
であります。

↓ after tokenization

私は、日本社会党を代表して、当面する内外の諸
問題につき、佐藤総理大臣にその所見をたださ
んとするものであります。

16

Preprocessing stage

Preprocessing stage
To introduce another term, word types refer to uniquely

occurring words

So that the text “one two one two” contains four tokens, but

only two word types, “one” and “two”

Preprocessing stage
For a token to become a feature of textual data (our basic

unit of analysis), it typically undergoes transformation in a

step often called “pre-processing”

Why such transformation is needed? Cause language is

complex. But not all of language’s complexity is necessary

to effectively analyze texts (REMEMBER?)

We should retain information that will be used by the

automated methods, while discarding information that

will likely be unhelpful, ancillary, or too complex for use in

a statistical model

In other words: there are many forms of “words”, and these

typically undergo a process of selection and transformation

before they become features of our textual dataset

Preprocessing stage

Text pre-processing can be divided into two broad

categories —noise removal & normalization

Preprocessing stage

1. Noise removal: Data components that are redundant to

the core text analytics can be considered as noise

Such as?!?

The First Step: the preparation

Stopwords! They include the large number of prepositions,

pronouns, conjunctions etc. in sentences such as the, is,

at, which, and on in English that occur in the greatest

frequency in natural language texts

These words can be considered unlikely to contribute useful

information for analysis, adding little specific political

meaning to the text

However…

The First Step: the preparation
…the pronoun “her”, as Monroe, Quinn and Colaresi

(2008) found, has a decidedly partisan orientation in

debates on abortion in the U.S. Senate

For these reasons, when preparing textual data for

analysis, always check the impact on your final results of

eliminating or not stopwords…

The First Step: the preparation

We also typically discard:

 Punctuation

 Capitalization: we apply lower-casing, which treats

words as equivalent regardless of how they were

capitalised

 We can also decide to eliminate words through the use

of predefined lists of words to be ignored (for

example: tags, URLs, etc.) or based on their relative

infrequency (words that appear only once or twice in

the corpus are unlikely to be discriminating)

The First Step: the preparation

2. Normalization: Handling multiple occurrences /

representations of the same word is called

normalization

There are two types of normalization: stemming and

lemmatization

The First Step: the preparation

Stemming normalizes text by reducing words to their stems,

which is a cruder algorithmic means of equating a word

with its canonical (dictionary) form, i.e., stemming treats

words as equivalent when they differ only in their

inflected forms

For example, the different words taxes, tax, taxation, taxing,

taxed, and taxable are all converted to their word stem

“tax”

The First Step: the preparation

By doing that, stemming reduce the total number of unique

words in the data set

Stemming

The First Step: the preparation

Lemmatization is a more advanced technique which works

based on the root of the word taking into consideration

the morphological analysis of the words

To do so, it is necessary to have detailed dictionaries which

the algorithm can look through to link the form back to its

lemma

The First Step: the preparation

Stemming

Lemmatization

The First Step: the preparation

In our analysis, we also discard the order in which words

occur in documents, i.e., we assume that documents are

a bag of words, where order does not inform our

analyses

Is it a problem?

For instance, the expressions ‘We are against lowering

taxes, and for tax increases’ and ‘We are for lowering

taxes, and against tax increases’ use the exact same

words, even though the meaning is reversed

The First Step: the preparation

While it is easy to construct sample sentences where word

order fundamentally changes the nature of the sentence,

empirically these sentences are rare

As a result, a simple list of words, which we call unigrams,

is often sufficient to convey the general meaning of a text

The First Step: the preparation

We can also retain some word-order by including bigrams

(word pairs, for example to distinguish the “White House”

from the color and the domicile) or any other (defined as

sequences of n consecutive tokens to form not words but

phrases)

This is a brute force method of recovering politically

meaningful multi-word expressions that might contain

identical unigrams but as phrases, mean exact opposites,

such as economy in the multi-word expressions

“command economy” and “market economy”

In practice, for common tasks, n-grams do little to improve

the performance of text analysis

The First Step: the preparation

The result of the preprocessing steps is that each

document can be represented as a vector that counts

the number of times each of the unique words occur in

each document

This the bag-of-words approach!

Multiple document vectors are then put together in a

document-term matrix (or document-feature matrix),

where each row represents a document and each

column represents a unique word, or term

The First Step: the preparation

The matching between row and column will report either

the frequency of that word in that document (as

discussed above)….

….or alternatively a list of 0/1: where 0 if that word is not

present in that document and 1 viceversa

This latter procedure is called one-hot-encoding

We will mainly deal with the former procedure - but not

only: for example, a one-hot-encoding could be

advisable given very short texts (such as tweets)

The First Step: the preparation

This matrix form of textual data can then be used as input

into a variety of analytical methods for describing the

texts

Quantitative text analysis thus moves textual data into

the same domain as other types of quantitative data

analysis, making it possible to bring to bear well-tested

statistical and machine learning tools of analysis and

prediction

The First Step: the preparation

Ironically, generating insight from text as data is only

possible once we have destroyed our ability to make

sense of the texts directly

To make it useful as data, we had to obliterate the

structure of the original text and turn its stylised and

oversimplified features into a glorified spreadsheet that

no reader can interpret directly, no matter how expert in

linear algebra

The First Step: the preparation

We should not lose any sleep over it, because the point in

analysing text as data was never to interpret the data

but rather to mine it for patterns

(text) Mining is a destructive process - just ask any

mountain! - and some destruction is inevitable in order to

extract its valuable resources

And consistently across applications, scholars have shown

that a simple representation of text such as the one we

get via a bag-of-words approach is sufficient to infer

substantively interesting properties of texts!

The First Step: the preparation

This approach also discards much linguistic information

regarding the surrounding syntactic and semantic

context of a given word in a sentence.

Of course, in some contexts bringing back the context in

which a word appears, can be very important…

For example, a bag-of-words assumption is that each word

is independently generated from some underlying

distribution

The problem is that speeches and other texts typically have

a large number of words that are not actually

independently generated (i.e., they come together!)

How to deal with that?

The First Step: the preparation

“You shall know a word by the company it keeps” (John

Firth, 1957)

Word embeddings!

It’s a means of building a low-dimensional vector

representation from corpus of text, which preserves the

contextual similarity of words

Methods that can retain this kind of information are able to

use this information to increase classification accuracy

If we have time, we will discuss about word embedding

later on

The First Step: the preparation

Thinking about the number of words every language is

made of, one might think that the document-term matrix

might possess a huge number of columns in any given

analysis

For instance, the Oxford English Dictionary classifies more

than 650,000 words

What turns out to be true is that, after stemming, the typical

length of the stem vector (i.e., the number of columns) is

no more than 300 or 500 and often much less

The First Step: the preparation

The main dimension that increases the computational

challenge is, on the contrary, quite often the number of

rows of the matrix, that is the number of texts to be

analyzed

This number is usually in the order of millions in social

media analysis for example

Still, regardless of the number of columuns, you could still

have a problem of sparsity (?!?)

The First Step: the preparation

In text mining, huge matrices are created based on word

frequencies with many cells having zero values

This problem is precisely what we call sparsity

The First Step: the preparation

In this sense, document-term matrices are affected by what

is known in machine learning as the curse of

dimensionality: new observations tend to grow the

feature set, and each new term found in even a

document adds a new column to the matrix

The challenge in this sense is how to store a sparse matrix

in a clever way (w/o all those 0s!) so that it occupies less

space

The First Step: the preparation

Several of the pre-processing techniques just discussed

allows to further minimize the sparsity problems

But several others are still available (i.e., the CSR (the

compressed sparse row) approach for example)

One further strategy for mitigating the problem of

exponentially increasing dimensionality is to trim or to

weight the document-feature(term) matrix

The First Step: the preparation

Trimming can be done on various criteria, but usually

takes the form of a filter based on some form of feature

frequency (i.e., keeping only features that appear just in

10% of documents for example)

The First Step: the preparation

Weighting schemes convert a matrix of counts into a

matrix of weights

The most common of these is relative term frequency, a

weighting process also known as document

normalisation because it homogenises the sum of the

counts for each document

Since documents in a typical corpus vary in length, this

provides a method for comparing frequencies more

directly than counts, which are inflated in longer

documents

The First Step: the preparation

Words may also be weighted according to how rare or

frequent they are in the corpus via a tf-idf (term

frequency-inverse document frequency) matrix

tf-idf is a method in information retrieval for down-weighting

the terms that are common to documents

tf-idf adds a weight that approaches zero as the number of

documents in which a term appears (in any frequency)

approaches the number of documents in the collection.

When we have selected our texts because they pertain

to a specific topic - as we usually will - then inverse

document frequency weighting means zeroing out most

of our topical words, since these will appear in most or

all documents

The First Step: the preparation

In texts of debates over health care, for instance, tf-idf

weighting is likely to eliminate all words related to health

care, even when they might occur at very different rates

across different documents

Note that if we think that it is not the occurrence, but rather

the relative frequencies of words that are informative,

then using tf-idf weighting is the opposite of what we

want!!!

The First Step: the preparation

Note that many models commonly used in political science

- such as the Wordfish model or topic models that we will

see later on - only work with counts as inputs, so that tf-

idf or other weighting schemes are inapplicable

The First Step: the preparation

Never underestimate the power of the preprocessing

stage!

Preprocessing has tremendous consequences for the

quality of automated text analysis

The First Step: the preparation
In one of the few systematic studies of feature processing

choices and their consequences, Denny and Spirling

(2018) replicated several published text analyses from

political science using a variety of alternative feature

processing steps

Their results shows that “under relatively small

perturbations of of preprocessing decisions...very

different substantive interpretations would emerge”

Researchers in practice should be aware of these

decisions, critically examine the assumptions of their

methods and how these relate to feature selection, and

test the robustness of these results

Statistical summaries

Once you have your DtM, you can start by running some

statistical summaries

Statistical summary methods are essentially quantitative

summaries of texts to describe their characteristics on

some indicator, and may use (or not) statistical methods

based on sampling theory for comparison

Statistical summaries (1)

The simplest such measures identify the most commonly

occurring words, and summarize these as frequency

distributions

For example: tag clouds! A tag cloud is a visual

representation of text data, in which tags are single

words whose frequency is shown with different font size

(and/or color)

Tag-cloud of the tweets posted in

@realDonaldTrump during the last 2 months of

the electoral campaign

https://twitter.com/realDonaldTrump

Comparing tag-clouds! The US Presidential

inaugural speeches example

Statistical summaries (2)
Other quantitative summary measures of documents are

designed to characterize specific qualities of texts

Comparing the rates of types and tokens forms the

foundation for measures of lexical diversity (the rate of

vocabulary usage), with most common such measure

comparing the number of types to the number of tokens

(the “type-token ratio”)

For example, it is argued that populist communication

means simplified political discourse (lower diversity), in

an attempt to reach the public more easily

So different, yet so alike (to

Donald Trump?)

Statistical summaries (3)

More sophisticated methods compare the differential

occurrences of words across texts or partitions of a

corpus, using statistical association measures, to identify

the words that belong primarily to sub-groups such

as those predominantly associated with male- versus

female - authored documents, or Democratic versus

Republican speeches

Statistical summaries (4)

Interesting descriptive statistics can also be produced

directly by working with the corpus, rather than with the

DtM

This allows us to retain the original text sequence, and

therefore, for example, to detect both the relative

frequency of an employed word across documents

as well as the “timing” of that word via a Lexical

dispersion plot

Inaugural Speeches by US Presidents

american

1949-Truman

1953-Eisenhower

1957-Eisenhower

1965-Johnson

1969-Nixon

1973-Nixon

1977-Carter

1981-Reagan

1985-Reagan

1989-Bush

1993-Clinton

1997-Clinton

2001-Bush

2005-Bush

2009-Obama

2013-Obama

2017-Trump

0.00 0.25 0.50 0.75 1.00

Relative token index

D
oc

um
en

t
Lexical dispersion plot

Before our first Lab class

If you have a laptop with you (you need around 20 mins):

1) Install the latest version of R

2) For Windows platforms: install the latest version of

Rtools (i.e., Rtools 4) from here (https://cran.r-

project.org/bin/windows/Rtools/)

3) For OS X, do the following:

a) First try to install Quanteda directly

b) If you fail in doing that, install XCode from the App Store

https://cran.r-project.org/bin/windows/Rtools/
https://itunes.apple.com/gb/app/xcode/id497799835?mt=12

Before our first Lab class
c) To install XCode, follow these simple rules:

1 Access to “Apple Developer”

https://developer.apple.com/download/more/

(You need Apple ID and password)

2 Insert “Xcode” in “Search Downloads” located on the left side

of the page.

3 Choose “Xcode 12” and download.

4 After finishing download, click "Finder" and then "download."

Double click “Xcode 12”. It may take a while to open this file

d) If you have problems to install the latest version of

Xcode, uses an earlier one, such as Xcode 9!

Before our first Lab class

Install the following packages by running these lines:

install.packages('devtools', repos='http://cran.us.r-project.org')

install.packages('quanteda', repos='http://cran.us.r-project.org')

install.packages('readtext', repos='http://cran.us.r-project.org')

install.packages('ggplot2', repos='http://cran.us.r-project.org')

install.packages('stopwords', repos='http://cran.us.r-

project.org')

install.packages('wordcloud', repos='http://cran.us.r-

project.org')

install.packages(‘shiny', repos='http://cran.us.r-project.org')

devtools::install_github("quanteda/quanteda.corpora")

