
Applied Scaling & 

Classification Techniques 

in Political Science

Lecture 1

An introduction to the course 

(and to text analytics!)



• Two classes each week starting from today, each Wed

(theory)/Thur (lab)

• Office Hour: basically when you want. Plz write me in 

advance to fix an appointment! 

• Email: luigi.curini@unimi.it

Boring (but needed) information



How to evaluate you???

Home-assignments!!!

Boring (but needed) information



• All the slides, scripts and datasets that we employ during

our classes (for my part) will be made available the day 

before each lecture at the following URL:

http://www.luigicurini.com/applied-scaling--classification-

techniques-in-political-science2.html

Boring (but needed) information

http://www.luigicurini.com/applied-scaling--classification-techniques-in-political-science2.html


• You should be familiar with R…and if you are not, you
will become!

Boring (but needed) information



This course is aimed to:

✓ Introduce you some of the new methods developed 

within the literature in the last years to analyze texts

✓ Offer you guidelines on how to effectively (and 

practically) use text methods for social scientific research

Boring (but needed) information



Boring (but needed) information

• Plan of the course: 

1. An introduction to text analytics

2. From words to positions: scaling algorithms 
(unsupervised & supervised)

3. From words to issues: classification algorithms 
(unsupervised, semi-supervised & supervised)

So let’s start!



Really boring information!

• My name is Luigi Curini

• Full Professor of Political Science at Università degli 
Studi di Milano

• Mainly interested in party competition, legislative 
behaviour, quantitative methods applied to political
science, social media
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It all began with…

It is no exaggeration to consider text as “the most pervasive 

- and certainly the most persistent artifact of political and 

social behavior”

Recognizing that language is central to the study of politics 

and social science is not new…

…however scholars have struggled when using texts to 

make inferences about politics for example



It all began with…

Why? Volume matters! There are simply too many texts 

out there! 

Rarely scholars are able (time/resources constrain!) to 

manually read all the texts



It all began with…

Recent methods have made progress by breaking from 

traditional (human) content analysis to treat text:

➢ not as an object for subjective interpretation, but…

➢ …as objective data from which information about the 

author can be estimated…i.e., treating words as data!

What do we mean by that?



It all began with…

Text is an example of “unstructured data”, because it is 

structured not for the purposes of serving as any form of 

data but rather structured according to the rules of 

language

Because “data” means, in its simplest form, information 

collected for use, text starts to become data when we 

record it for reference or analysis, and this process 

always involves imposing some abstraction or 

structure that exist outside the text itself



It all began with…

Absent the imposition of this structure, the text remains 

informative - we can read it and understand what it means 

- but it does not provide a form of information

That is, treating texts-as-data means: 

1. arranging texts for the purpose of analysis, using a 

structure that probably was not part of the process that 

generated the data itself

2. through that, making texts amenable to the tools of data-

analysis

This make possible what was previously impossible: the 

systematic analysis of large-scale text collections that 

facilitates substantively important inferences from them



It all began with…

The opportunities afforded by vast electronic text archives 

and algorithms for text analysis are in a real sense 

unlimited

Yet in a rush to take advantage of the opportunities, it is 

easy to overlook some important questions and to 

underappreciate the consequences of some decisions



Just as no body escapes Newton’s laws, no technique can 

escape the following fundamental principles of text 

analysis



Four principles of Automated Text 
Analysis to keep in mind (as 

social scientists!)



1) All quantitative 
models of 

language are 
wrong – but 

some are useful



The first principle

Data generation process for any text is a mystery

If a sentence has complicated structure, its meaning could 

change drastically with the inclusion of new words (or 

punctuation…)



The first principle

The Sibyl

“ibis, redibis, non morieris in bello” 

vs. 

“ibis, redibis non, morieris in bello” 



The first principle

The complexity of language implies that all methods 

necessarily fail to provide an accurate account of 

the data-generating process used to produce 

texts

That all automated methods are based on incorrect 

models of language therefore implies that the 

models should be evaluated based on their ability 

to perform some useful social scientific task 



2) Quantitative 
methods amplify 

humans, not 
replace them



The second principle

The complexity of language implies that automated 

content analysis methods will never replace careful and 

close reading of texts

Rather, such methods are best thought of as amplifying 

careful reading and thoughtful analysis

Researchers still guide the process, make modeling 

decisions, and interpret the output of the models



«The best technology is human-

empowered and computer-assisted» 

(Gary King, Harvard University) 
(G. King, Harvard University)



3) There is no a 
best method for 
automated text 

analysis



The third principle

Different datasets and different research questions often 

lead to different quantities of interest. This is particularly 

true with text models!

We should simply acknowledging that there are different 

research questions and designs that imply different 

types of models 

As a result, every research question and every text-as-data 

enterprise is unique. Analysts should do their own 

testing to determine how the decisions they are making 

affect the substance of their conclusions, and be mindful 

and transparent at all stages in the process



4) Validate, 
validate, validate



The fourth principle

As told, the complexity of language implies that 

automated content methods are incorrect models of 

language

This means that the performance of any one method on a 

new data set cannot be guaranteed, and therefore 

validation is essential when applying automated content 

methods

We will discuss about validation a lot

What should be avoided, then, is the blind use of any 

method without a validation step

For analysts using text as data, there are decisions at every 

turn, and even the ones we assume are benign may 

have meaningful downstream consequences!!!



Let’s start our journey…

So how to prepare a text for the analysis?



Our Course Map



The First Step: the preparation

Two stages:

1. Defining the corpus and the unit of analysis, and then

acquiring the texts

2. Preprocessing stage: defining and refining textual

features (i.e., words) as well as converting them into a 

quantative matrix



Define the corpus

Jargon: we refer to text or document as the unit of 

analysis (it could apply to any unit of text: a tweet, a 

Facebook status, press briefing, sentence, paragraph) 

We refer to the population of texts to be analyzed as the 

corpus and a collection of these as corpora



Define the corpus

A year of articles about the economy from The New York 

Times, for instance, could form a corpus for analysis, 

where the unit (text or document) of analysis is an article

A set of debates during (one of the many) votes on Brexit in 

the UK House of Commons could form another corpus, 

where the unit of analysis is a speech act (one 

intervention by a speaker on the floor of parliament)



Acquire the texts

The burst of interest in automated content methods is 

mainly due to the proliferation of easy-to-obtain digital 

texts 

Some of these texts are already available (for example, 

legislative speeches), others should be recollected by 

you, by scraping or via API query

Later on we will discuss how to retrieve data from social 

media (i.e., Twitter, but you can easily employ API via R 

packages to retrieve data also from Redditt, YouTube & 

TikTok for example. If you are interest, plz drop me an 

email!)

Moreover, if you are interest in getting data from Facebook 

and/or Instagram, you can apply to get a research 

account from CrowdTangle. And if you are lucky…

https://www.crowdtangle.com/




Acquire the texts

As a researcher, when you acquire your corpus you need 

to ensure that the texts under examination are related to 

the research question you are interest about and 

have theoretical consistency

For example, imagine that you want to retrieve your corpus 

from Twitter by using a list of keywords



Acquire the texts

In this case you want to generate a list of keywords 

expected to distinguish between tweets relevant to the 

topic you are interest about (say, Donald Trump) 

compared to irrelevant tweets

It is however critical that the analyst pay attention to 

selecting keywords that are both relevant to the 

population of interest (given the topic you care about) 

and representative of the population of interest (i.e., not 

being too narrow and selecting only the tweets pro or 

against Donald Trump via a biased list of keywords)



Acquire the texts

In other words, in our attempt to acquire our corpus, we 

want to include in the corpus all relevant texts (i.e., 

minimize false negatives) and exclude any irrelevant 

texts (i.e., minimize false positives) 



Convert the texts

The step of converting the texts into a common electronic 

format is a purely technical one, involving no research 

design decisions, but it can nonetheless poses one of 

the stickiest problems in text analysis (pdf as image…)

In R, we will use the readtext command in this regard 

and then the corpus command to declare that a set of 

texts belong to the same collection you want to analyze

(i.e. to the same corpus) 



Preprocessing stage

But then…how to move from words to number? That is:

➢ how a text can be transformed into digital data so that 

an algorithm can then treat it?



Preprocessing stage
Introducing some terms…

Words as they occur in a text are commonly known as tokens, 

so that the text “one two one two” contains four tokens

Tokenization is the process of splitting a text into its 

constituent tokens

In R, we will very often use the tokens command in this 

regard

Tokenization usually happens by recognizing the delimiters 

between words, which in most languages takes the form of a 

space

In more technical language, inter-word delimiters are known as 

whitespace, and include additional machine characters 

such as newlines, tabs, and space variants



Preprocessing stage

However in some major languages, such as Chinese and 

Japanese, sentences are only distinguished by commas 

and periods, and words are put in sequence without 

spaces in between. And so?

Tokenizing these languages requires a set of rules to 

recognize word boundaries, usually from a listing of 

common word endings



私は、日本社会党を代表して、当面する内外の諸問題に
つき、佐藤総理大臣にその所見をたださんとするもの
であります。

↓ after tokenization

私は、日本社会党を代表して、当面する内外の諸
問題につき、佐藤総理大臣にその所見をたださ
んとするものであります。

43

Preprocessing stage



Preprocessing

In R, we will use the tokens command to tokenize a text 

The nice thing about tokens is that it allows to directly 

tokenize also Japanese/Chinese etc.



Preprocessing stage
To introduce another term, word types refer to uniquely 

occurring words

So that the text “one two one two” contains four tokens, but 

only two word types, “one” and “two”



Preprocessing stage

For a token to become a feature of textual data (our basic 

unit of analysis), it typically undergoes a process of 

selection and transformation in a step often called “pre-

processing” 

Why do we need such process? Cause language is 

complex! But not all of language’s complexity is necessary 

to effectively analyze texts (REMEMBER?)

We should retain information (i.e., tokens) that will be used 

by the automated methods, while discarding information 

(i.e., tokens) that will likely be unhelpful, ancillary, or too 

complex for use in a statistical model



Preprocessing stage

Text pre-processing can be divided into two broad 

categories —noise removal & normalization



Preprocessing stage

1. Noise removal: Data components that are redundant to 

the core text analytics can be considered as noise

Such as?!?



The First Step: the preparation

Stopwords! They include the large number of prepositions, 

pronouns, conjunctions etc. in sentences such as the, is, 

at, which, and on in English that occur in the greatest 

frequency in natural language texts 

These words can be considered unlikely to contribute useful 

information for analysis, adding little specific political 

meaning to the text

However…



The First Step: the preparation
…the pronoun “her”, as Monroe, Quinn and Colaresi

(2008) found, has a decidedly partisan orientation in 

debates on abortion in the U.S. Senate

For this reason, when preparing textual data for analysis, 

always check the impact on your final results of dropping 

stopwords



The First Step: the preparation

We also typically discard: 

➢ Punctuation

➢ Capitalization: we apply lower-casing, which treats 

words as equivalent regardless of how they were 

capitalised

➢ We can also decide to eliminate words through the use 

of predefined lists of words to be ignored (for 

example: tags, URLs, etc.) or based on their relative 

infrequency (words that appear only once or twice in 

the corpus are unlikely to be discriminating)



The First Step: the preparation

2. Normalization: Handling multiple occurrences / 

representations of the same word is called 

normalization

There are two types of normalization: stemming and 

lemmatization



The First Step: the preparation

Stemming normalizes text by reducing words to their stems, 

which is a cruder algorithmic means of equating a word 

with its canonical (dictionary) form, i.e., stemming treats 

words as equivalent when they differ only in their 

inflected forms



The First Step: the preparation

For example, the different words taxes, taxation, and taxable 

are all converted to their word stem “tax”

Stemming of course reduce the total number of tokens in the 

corpus

Form Suffix Stem

taxes -es tax

taxation -axation tax

taxable -able tax



The First Step: the preparation

Lemmatization is a more advanced technique which works 

based on the root of the word taking into consideration 

the morphological analysis of the words

To do so, it is necessary to have detailed dictionaries which 

the algorithm can look through to link the form back to its 

lemma



The First Step: the preparation
For example, runs, running, and ran are all forms of the word 

run, therefore “run” is the lemma of all these words

Form Suffix Stem

runs -s run

running -ning run

ran -- ran

Stemming

Form Morphological information Lemma

runs Third person, present tense of 

the verb run

run

running Present participle of the verb

run

run

ran Past tense of the verb run run

Lemmatization



The First Step: the preparation

Quite often (in particular in all non-positional analyses), we 

also discard the order in which words occur in 

documents, i.e., we assume that documents are a bag 

of words, where order does not inform our analyses

Is it a problem? 

For instance, the expressions ‘We are against lowering 

taxes, and for tax increases’ and ‘We are for lowering 

taxes, and against tax increases’ use the exact same 

words, even though the meaning is reversed



The First Step: the preparation

While it is easy to construct sample sentences where word 

order fundamentally changes the nature of the sentence, 

empirically these sentences are rare

As a result, a simple list of words, which we call unigrams, 

is often sufficient to convey the general meaning of a text

And consistently across applications, scholars have shown 

that a simple representation of text such as the one we 

get via a bag-of-words approach is sufficient to infer 

substantively interesting properties of texts!



The First Step: the preparation

We can also retain some word-order by including bigrams

(word pairs, for example to distinguish the “White House” 

from the color and the domicile) or any other (defined as 

sequences of n consecutive tokens to form not words but 

phrases) 

In practice, for common tasks, n-grams do little to improve 

the performance of text analysis



The First Step: the preparation

The result of the preprocessing steps is that each 

document can be represented as a vector that counts

the number of times each of the unique words occur in 

each document 

This the bag-of-words approach!

Multiple document vectors are then put together in a 

document-term matrix (or document-feature matrix), 

where each row represents a document and each 

column represents a unique word, or term

In R, we will use the dfm command in this regard



readtext

& corpus

dfm

tokens



The First Step: the preparation

The matching between row and column will report either 

the frequency of that word in that document (as shown 

above)….

….or alternatively a list of 0/1: where 0 = word not present 

in that document and 1 viceversa

This latter procedure is called one-hot-encoding 

We will mainly deal with the former procedure - but not 

only: for example, a one-hot-encoding could be 

advisable given very short texts (such as tweets)



The First Step: the preparation

This matrix form of textual data can then be used as input 

into a variety of analytical methods for describing the 

texts

Ironically, generating insight from text as data becomes 

possible once we have destroyed our ability to make 

sense of the texts directly

We should not lose any sleep over it, because the point in 

analysing text as data is never to interpret the data but 

rather to mine it for looking for patterns



The First Step: the preparation

A bag-of-words approach therefore discards much linguistic 

information regarding the surrounding syntactic and 

semantic context of a given word in a sentence 

Of course, in some contexts bringing back the context in 

which a word appears, can be very important…

Positional analysis, such as word embeddings, allows 

us to do precisely that (and if have time, we will discuss 

about such type of analysis at the end of the course)



The First Step: the preparation

DfMs are affected by what is known as the curse of 

dimensionality: new observations tend to grow the 

feature set, and each new term found in even one single 

document adds a new column to the matrix

This usually creates a problem of sparsity in your dfm (a 

matrix with lots of 0s!) – often a statistical challenge!



The First Step: the preparation

Several of the pre-processing techniques just discussed 

allows to minimize precisely the sparsity problems

One further strategy for mitigating the problem of 

exponentially increasing dimensionality is to trim the 

document-feature(term) matrix

Trimming can be done on various criteria, but usually 

takes the form of a filter based on some form of feature 

frequency (i.e., keeping only features that appear just in 

10% of documents for example)



The First Step: the preparation

Under some given circumstances, you could also prefer to 

weight your document-feature(term) matrix

Weighting schemes convert a matrix of counts into a 

matrix of weights

The most common of these is relative term frequency, a 

weighting process also known as document 

normalisation because it homogenises the sum of the 

counts for each document

Since documents in a typical corpus vary in length, this 

provides a method for comparing frequencies more 

directly than counts, which are inflated in longer 

documents 



The First Step: the preparation

Words may also be weighted according to how rare or 

frequent they are in the corpus via a tf-idf (term 

frequency-inverse document frequency) matrix  

tf-idf is a method in information retrieval for down-weighting 

the terms that are common to documents 

tf-idf adds a weight that approaches zero as the number of 

documents in which a term appears (in any frequency) 

approaches the number of documents in the collection

In  texts of debates over health care, for instance, tf-idf

weighting is likely to eliminate all words related to health 

care, even when they might occur at very different rates 

across different documents



The First Step: the preparation

Note that several of the models we will discuss only work 

with counts as inputs, so that tf-idf or other weighting 

schemes are inapplicable (but trimming always yes!)



The First Step: the preparation

Never underestimate the power of the preprocessing 

stage! 

Preprocessing has tremendous consequences for the 

quality of automated text analysis



The First Step: the preparation

Denny and Spirling (2018) replicated several published text 

analyses from political science using a variety of 

alternative feature processing steps

Their results shows that “under relatively small 

perturbations of of preprocessing decisions...very 

different substantive interpretations would emerge” 

Researchers in practice should be aware of these 

decisions, critically examine the assumptions of their 

methods and how these relate to feature selection, and 

test the robustness of these results



Before our first Lab class

If you have a laptop with you:

1) Install the latest version of R 

2) For Windows platforms: install the latest version of 

Rtools (i.e., Rtools 4) from here (https://cran.r-

project.org/bin/windows/Rtools/) 

For OS X, do the following:

a) First try to install Quanteda directly

b) If you fail in doing that, install XCode from the App Store

https://cran.r-project.org/bin/windows/Rtools/
https://itunes.apple.com/gb/app/xcode/id497799835?mt=12


Before our first Lab class
c) To install XCode, follow these simple rules:

1 Access to “Apple Developer”

https://developer.apple.com/download/more/

(You need Apple ID and password)

2 Insert “Xcode” in “Search Downloads” located on the left side 

of the page.

3 Choose “Xcode 12” and download.

4 After finishing download, click "Finder" and then "download." 

Double click “Xcode 12”. It may take a while to open this file

d) If you have problems to install the latest version of 

Xcode, uses an earlier one, such as Xcode 9!



Before our first Lab class

e) To make things even more complicated for Mac users: 

the latest R could not be compatible with the most recent 

Xcode. In that case, they the second most recent version 

of R



Before our first Lab class

Install the following packages by running these lines (1): 

install.packages('quanteda', repos='http://cran.us.r-project.org')

install.packages('quanteda.textstats', repos='http://cran.us.r-

project.org')

install.packages('quanteda.textplots', repos='http://cran.us.r-

project.org')

install.packages('readtext', repos='http://cran.us.r-project.org')

install.packages('devtools', repos='http://cran.us.r-project.org')

devtools::install_github("quanteda/quanteda.corpora")

devtools::install_github("quanteda/quanteda.textmodels") 



Before our first Lab class

Install the following packages by running these lines (2): 

install.packages('ggplot2', repos='http://cran.us.r-project.org')

install.packages('SnowballC', repos='http://cran.us.r-project.org')

install.packages('corrplot', repos='http://cran.us.r-project.org')


