
Big Data Analytics

Lecture 4/B

Cross-Validation & the importance of

a good training-set

Reference

✓ Grimmer, Justin, and Stewart, Brandon M. (2013). Text as
Data: The Promise and Pitfalls of Automatic Content Analysis
Methods for Political Texts. Political Analysis, 21(3): 267-297

✓ Curini, Luigi, and Robert Fahey (2020). Sentiment Analysis
and Social Media. In Luigi Curini and Robert Franzese (eds.),
SAGE Handbook of Research Methods is Political Science &
International Relations, London, Sage, chapter 29

✓ Cranmer, Skyler J. and Desmarais, Bruce A. (2017) What Can
We Learn from Predictive Modeling?, Political Analysis, 25:
145-166

✓ Barberá, Pablo et al. (2020) Automated Text Classification of
News Articles: A Practical Guide, Political Analysis, DOI:
10.1017/pan.2020.8

2

Validation

Validation

Since the ultimate goal of supervised learning is to find

generalizable patterns of association, models must be

selected based on their ability to generate good out-of-

samples predictions (i.e., good predictions on the test-

set)

However, it is impossible to evaluate a model's performance

on the universe of test-set documents (i.e., you do not

know by definition their “true” class-labels after all!), so an

approximate measure of performance must be devised

Validation

Supervised methods are designed to automate the hand

coding of documents into categories as we have already

noticed

If a method is performing well, it will therefore directly

replicate the hand coding. If it performs poorly, it will fail

to replicate the coding – instead introducing serious errors

This clear objective implies a clear standard for evaluation:

comparing the output of machine coding to the output of

hand coding. From here the idea of validation!

Validation

The ideal validation procedure would divide the data into

three subsets

1. Initial model fitting would be performed on the training-set

2. Once a final model is chosen, a second set of hand-coded

documents - the validation set - would be used to assess

the performance of the model

3. The final model would then be applied to the test to

complete the classification

Validation

This approach to validation is difficult to apply in most

settings. But cross-validation (also called: K-fold

validation) can be used to replicate this ideal procedure

Validation

In K-fold cross-validation, the training set is randomly

partitioned into some groups (say two: K1 and K2)

For each group, the first model is trained on K1, then applied

to the K2 to assess performance; similarly a model is

trained on the K2 and then applied to K1 to assess

performance

Then you take the average across the results you get in the

two scenarios

Validation

And if you want to run a K-fold cross-validation with K

larger than 2?

The algorithm is as follow:

1. Randomly split the data set into k-subsets (or k-fold) (for

example 5 subsets)

2. Reserve one subset and train the model on all other subsets

(4 in this case)

3. Test the model on the reserved subset and record the

prediction error

4. Repeat this process until each of the k subsets has served

as the test set

5. Compute the average of the k recorded errors. This is called

the cross-validation error serving as the performance

metric for the model

Validation

So, for example, with K-fold cross-validation=5…
T

ra
in

in
g
-s

e
t

Validation

How to choose right value of k?

Lower value of k is more biased and hence undesirable. On

the other hand, higher value of k is less biased, but can

suffer from large variability

In practice, one typically performs k-fold cross-validation

using k = 5 or k = 10, as these values have been shown

empirically to yield test error rate estimates that suffer

neither from excessively high bias nor from very high

variance

Validation

REMEMBER: Cross-validation is the only way to

control if the ML algorithm you are using is doing a

good job or not (unless you are ready to believe in that

by fiat)!

True: in Random Forest we can also focus on the OOB

sample, still the final results are not reliable as via

cross-validation (i.e., you focus only on those rows not

included in the bootstrapped trees, while by doing CV

you are ensured that all the rows, i.e., documents of

your corpus, are included in the analysis)

Validation

Moreover, cross-validation avoids overfitting by

focusing on out-of-sample prediction and selects the

best model for the underlying data from a set of

candidate models

Validation

Which statistics (or performance metrics) should we use

to assess model performance?

There are several of them, but we are going to focus on

three metrics for individual classifiers with text-analysis

Validation

Accuracy: proportion of correctly classified documents

While of course we want this score to be as high as possible,

it can also be important to look at the two components

which make up that score, known as recall and precision

Note moreover that accuracy refers to the overall model

performance. Recall and precision refers to the

performance of your model with respect to a specific

category k

Validation
Recall or Sensitivity (for a category k) is a measure of

what proportion of documents of a given category the

algorithm correctly identified (i.e., minimize false

negatives)

For example, if there were 10 documents of the category

“positive” in the data set, and the algorithm correctly

identified 8 of them, we would say that this algorithm

has “recall of 0.8 for the category positive”

✓ given that a human coder labels a document as

belonging to category k, what is the chance the

machine identifies the document?

Validation

Precision or Positive Predictive Value (for a category k)

on the other hand is a measure of how many of the

times the algorithm identified a category were actually

correct, as against how many times were false positives

(i.e. minimize false positives)

In the previous example, where the algorithm correctly

identified 8 of the 10 documents as positive, perhaps

the algorithm also miss-identified 4 other documents as

positive - so 8 out of its 12 positive classifications were

correct, allowing us to say that it has a “precision of

0.667 for the category positive”

✓ given that the machine guesses category k, what is the

probability that the machine made the right guess?

Validation

If you find market differences between the recall and

precision (for example, with a recall rate >> precision)

implies that your algorithm guesses too often that a

document belongs to category k

The result is that it labels a large portion of the human

coder’s as k correctly (and so you have a high recall

rate). But it also includes several documents that humans

label differently (and so you have a low precision)

Validation

The aggregate of the recall and precision scores for a

category is known as the f1 score

More precisely, the traditional F-measure or balanced F-

score (f1) is the harmonic mean of precision and recall:

f1 = (2 * precision * recall) / (precision + recall)…

…where the highest level of performance (of f1) is equal to 1

and the lowest 0

Validation

The average of the f1 scores for all the categories is

another reasonable rough measurement of the

performance of the algorithm (and often more than

accuracy alone as we will see below!)

However, before using the algorithm for any serious analysis

work, it is always advisable also to take a look at the

precision and recall scores for individual categories - you

may find that a category you are planning to use in your

analysis actually has very high rate of false-positive or

false-negative identifications, which could cause serious

problems for your results

Let’s an example on how to compute the statistics we

discussed up to now from the Confusion matrix

Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionBlack=
TrueB+ FalseB

TrueB

RecallBlack =
TrueB + FalseW

TrueB

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1Black =
precisionB+ recallB

2 * precisionB* recallB

Think

horizontally

Think

vertically

Performance metrics

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionBlack =
800+ 100

= 0.88
800

RecallBlack =
800+ 50

= 0.94
800

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 Black =
.88+ .94

= 0.91
2*.88*.94

Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionWhite =
TrueW+ FalseW

TrueW

RecallWhite =
TrueW + FalseB

TrueW

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1White =
precisionW + recallW

2 * precisionW * recallW

Think

horizontally

Think

vertically

Performance metrics

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionWhite =
50+ 50

= 0.5
50

RecallWhite =
50+ 100

= 0.33
50

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 White=
.5+ .33

= 0.39
2*.5*.33

Performance metrics
In this example you are going to have a single Accuracy

value=0.85

However, you could also take the average of the F1 scores

for the classes as another measure of the performance of

the algorithm

In our case: (.91+.39)/2=.65

You see the difference here between Accuracy and the

averaged F1 score!

This difference is due that we are doing well with the Black

class, but relative poorly with the White class

Rule-of-thumb: everytime you notice a market difference

between Accuracy and F1 score, there are problems for

your model!!!

Performance metrics

Accuracy = 95 + 1

95+ 4 + 1 + 1
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
1

Accuray seems pretty high, but compared to a natural

benchmark (i.e., to a dull algorithm that simply assigns all

the observations to the most frequent class - here cats)?

In this case a random draw would produce once again 95%

of Accuracy (i.e., 96/101)! Not so impressive after all…

Let’s see another example

Performance metrics

Accuracy = 95 + 1

95+ 4 + 1 + 1
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
1

Moreover, stark contrast between the two classes:
PrecisionCats = 95/99=.96

RecallCats = 95/96=.99

F1Cats =.97

PrecisionDogs = 1/2=.5

RecallDogs = 1/5=.2

F1Dogs =.29

Avg. F1=.63

Let’s see another example

The imbalanced data-set riddle
In this example (as in the previous one…), Accuracy

does not turn to be a reliable metric for the real

performance of a classifier

This happens with a greater likelihood precisely when

your data set is highly unbalanced (i.e., a data set

that contains many more samples from one class than

from the rest of the classes)

Indeed, if you have a very imbalanced data set you

could have a very hard day with any ML algorithm.

Why?

The imbalanced data-set riddle
In this scenario, classifiers can have a good accuracy on

the majority class but a very poor accuracy on the

minority class(es) due to the influence that the larger

majority class produces

That is, the model will perform badly because the model is

not trained on a sufficient amount of data representing

the minority class(es), so a particular classifier might

classify almost all the observations as belonging to

the majority class (as cats in our previous example)

This of course will affect negatively your out-of-sample

prediction!

The imbalanced data-set riddle

The existence of a category Ck extremely frequent in a

training-set can negatively affect 𝑝 𝑪 𝑾

The imbalanced data-set riddle
And so?

Best strategy: go back to your training-set and improve on it

by collecting more texts for the minority categories to

decrease the overall level of class imbalance

And if you cannot? As a second-best strategy, you can

always try to resample the original training dataset

The imbalanced data-set riddle
Resampling is done either by oversampling the minority class

and/or under-sampling the majority class until the classes

are approximately equally represented

Even though both approaches address the class imbalance

problem, they also suffer some drawbacks. The random

undersampling method can potentially remove certain

important data points (and therefore information!), and

random oversampling can lead to overfitting

The imbalanced data-set riddle
Other possibility: Synthetic data generation such as…

SMOTE: Synthetic Minority Over-sampling Technique has

been designed to generate new samples that are coherent

with the minor class distribution

The main idea is to consider the relationships that exist

between samples and create new synthetic points along

the segments connecting a group of neighbors

The imbalanced data-set riddle

An example with 2 features

The imbalanced data-set riddle
The SMOTE algorithm works directly on the DfM, by imputing

values to new «rows» for each feature includeded in the

DfM

An alternative to SMOTE when dealing with text classification

is to use some NLP algorithm that learns the relationship

between words in the texts related to a given class, and

then producing some new synthetic texts related to that

class

If you are interest in this topic, drop me an email to get an

example!

Validation: another example

with 3 categories

Here Accuracy is equal to the ratio between the sum of the

diagonal (i.e., the sum of «True Positive») and the total number of

observations, i.e., (5+3+11)/(5+2+3+3+2+1+11)=0.704

Validation
For each category k we can move from here

to here (example for the “cat” category)

Validation
Then:

In the case, Precision for the cat class is: 5/(5+2)=0.71

Recall for the cat class is: 5/(5+3)=0.625

f1 for the cat class is: 2*(0.625*071)/(0.625+071)=0.66

You can do the same thing for the dog and the rabbit cases,
and then averaging across values to have a sense of the
overall performance of your model

Validation

Depending on the application, scholars may conclude that

the supervised method is able to sufficiently replicate

human coders. A largely employed rule-of-thumb is getting

accuracy>.85 for example (or f1>.75) (at least when you

are dealing with just 2 categories)

Or, additional steps can be taken to improve accuracy,

including trying to apply other ML algorithms or…

Validation

…as already underlined, most algorithms also have a range

of “hyper-parameters” (or “tuning parameters”) –

assumptions and modifiers which are used to fine-tune the

model and which can be set to different values prior to

training – that can significantly impact performance

(remember about the number of trees in RF)

Finding the right set of hyper-parameters for a certain task

and a specific data set is also largely a case of trial and

error, and it can only be done once again via cross-

validation!

Validation

Some packages in R (such as Caret or h2o or the same

Quanteda with the library quanteda.classifiers)

provide ways to automate this task; this is known as a

“grid search”, allowing researchers to exhaustively search

through every combination of a set of hyper-parameters to

find the best performing model

This process can take a lot of time – often in the order of

several hours for algorithms with complex sets of

parameters – but often yields better performance than the

default parameter set

Validation

Summing up: the purpose of cross-validation is model

checking!

Accordingly, cross-validation allows you to:

✓ select among different machine-learning

algorithms...(remember the No Free Lunch Theorem!

No machine learning algorithm is always better at

predicting new, unobserved, data points universally)

✓ ..and to identify the better hyperparameters setting for

a given ML algorithm

As a result always run a cross-validation before classifying

the test-set to select the best ML algorithm given your

corpus!

Validation: a summary

Two possible routes in this regard according to how you want

to deal with the hyper-parameters:

First route (to success…)

a) You keep the default hyper-parameters of your ML

algorithms;

b) you run a CV on each of such ML algorithms

c) you select the one (or two) with the best performance on

CV

d) you fine-tune the hyper-parameters on such model(s)

e) you re-run CV just on them

f) you keep the ML algorithm that performs better in the CV

Constructing a training set

For supervised problems, the researcher is aiming to classify

documents into a set of known or assumed categories

based upon rules or information that can be learned from

the training set

This requires labels in the training set from which to infer

categories in the test set

The most important step in applying a supervised learning

algorithm is therefore constructing a reliable training set,

because no statistical model can repair a poorly

constructed training set!

If the training set is poorly constructed, the supervised

algorithms will simply replicate such poorly construction!

Constructing a training set
(1) creating and executing a coding scheme:

Best practice is to iteratively develop coding schemes

Initially, a concise codebook is written to guide coders, who

then apply the codebook to an initial set of documents

For example, suppose you want to code the FB posts of

politicians as either employing a populist language or

otherwise. Accordingly, you need to advance a clear

definition of populist language, with possible some

examples, to show to your coders

When using the codebook, particularly at first, coders are

likely to identify ambiguities in the coding scheme (for

example: how to classify a post that discusses about

political corruption, but that praises the role of science?)

Constructing a training set
(1) creating and executing a coding scheme:

While doing this, always define a number of exhaustive (and

exclusive) categories – no overlooked categories should

be present!

Suppose you want to classify tweets discussing about ISIS as

either positive, negative or neutral. Then suppose that in the

training-set you discover a sub-set of tweets that uses the

hashtag #Isis as a way to make more viral tweets on a

completely different topic. In this instance, you could include a

category off-topic to label such tweets. In a different situation,

you can also decide to include a category “Others”, wherein

classifying the texts that do not deal with any of the theoretically

interesting categories you have identified for your research

ML algorithms must learn to classify also those categories!

Constructing a training set

(1) creating and executing a coding scheme:

This subsequently leads to a revision of the codebook,

which then needs to be applied to a new set of documents

to ensure that the ambiguities have been sufficiently

addressed

Only after coders apply the coding scheme to documents

without noticing ambiguities is a “final” scheme ready to be

applied to the data set

Constructing a training set

(2) sampling documents:

Basically all ML methods aiming at individual classification

implicitly assume that the training set is a random

sample from the population of documents to be coded

This is because Supervised learning methods use the

relationship between the features in the training set to

classify the remaining documents in the test set (out-of-

sample predictions)

Constructing a training set

(2) sampling documents:

This presents particular difficulty when…

…all the data are not available at the time of coding:

either because it will be produced in the future or because

it has yet to be digitized

Per-se, this could be particularly problematic in dealing with

any semantic change, which is the difference in the

meaning of language between the training and test sets

Constructing a training set

(2) sampling documents:

For example, we can have emergent discourse, where new

words and phrases, or the meanings of existing words and

phrases, appear in the test set but not the training set

Constructing a training set

emergent discourse example:

Constructing a training set

(2) sampling documents:

…and vanishing discourse, where the words, phrases, and

their meanings exist in the training set but not in the test

set

How to face this risk?

Keep updating the training-set (if your test-set is still to

come...)!

Constructing a training set

(2) sampling documents:

Furthermore, Supervised methods need enough

information to learn the relationship between words and

documents in each category of a coding scheme

Hopkins and King (2010) offer five hundred as a rule of

thumb with one hundred documents for each class-label

probably being enough

Constructing a training set

(2) sampling documents:

Still the number necessary will depend upon:

a) the specific application of interest. For example, as the

number of categories in a coding scheme increases, the

number of documents needed in the training set also

increases

Constructing a training set
(2) sampling documents:

b) Moreover, if a category does not occur, or occurs

extremely rarely, in the training set, there is insufficient

opportunity to “learn” about this category and its

properties, which will in turn interfere with the process of

classifying test-set documents into this category correctly

When attempting to detect small changes or rare

categories, therefore, increasing the probability that they

are observed in the training set often means increasing the

size of the training set relative to the test set (remember

the curse of highly imbalanced training-set!)

That also means that you can decide to collapse two different

categories into one to increase their volume (as far as

these two categories are not your main theoretical focus!)

Constructing a training set

(2) sampling documents:

c) You also have to consider the risk of a lack of textual

discrimination. This happens where the language used in

documents falling in the different pre-defined categories is

not clearly distinguishable

Lack of textual discrimination among categories can occur

because of heterogeneity in how authors express

category-related information or a divergence between how

authors of the documents express this information and

how the analyst conceptualizes the categories

Also this factor affects the appropriate size of the training-set

Constructing a training set

(3) checking human-tagging reliability:

While labeling training data often requires the use of human

coders to sort texts into desired categories, human coding

lacks consistency and reliability both within and across

individuals, above and beyond the time and expense

required to complete the task

Therefore always run an inter-coder reliability text!!!

Constructing a training set

(3) checking human-tagging reliability:

What is inter-coder (or inter-rater) reliability?

Intercoder reliability is the extent to which 2 different

researchers agree on how to code the same content

It’s often used in content analysis when one goal of the

research is for the analysis to aim for consistency and

validity

Intercoder reliability ensures that when you have multiple

researchers coding a set of data, that they come to the

same conclusions

Constructing a training set

One common statistics used is Cohen's kappa coefficient (κ)

k is a more robust measure than simple percent agreement

calculation, as it takes into account the possibility of the

agreement occurring by chance

For example, if you have 2 coders, and one of them is doing

a good job in coding, while the other is always choosing

the class label completely at random, you are going still to

get some percent agreement between the two coders

However this percent agreement would occur just by chance!

Constructing a training set

K is estimated as (po-pe)/(1- pe)

where pois the relative observed agreement among raters

(identical to accuracy), and pe is the hypothetical probability

of chance agreement, using the observed data to calculate

the probabilities of each observer randomly seeing each

category

If the raters are in complete agreement then k=1. If there is no

agreement among the raters other than what would be

expected by chance (as given by pe), k=0. It is possible for

the statistic to be negative, which implies that the agreement

is worse than random

Usually a reasonable value for k is larger than .6 (but larger than

.8 would be far better)

Constructing a training set

Confusion matrix:

Coder B
Coder A Positive Negative
Positive
Negative

20
10

5
15

Observed proportionate agreement (po): (20+15)/50=0.7

✓ A good outcome? Well, not necessarily…

Let’s see an example, with 2 coders, 2 categories, and 50 texts

to code for each coders

Constructing a training set

Confusion matrix: Coder B
Coder A Positive Negative
Positive
Negative

20
10

5
15

And the probability of a random agreement (pe)?

✓ Coder A said “Positive" to 25 texts and “Negative" to 25 texts.

Thus reader A said “Positive" 50% of the time

✓ Coder B said “Positive" to 30 texts and "Negative" to 20 texts.

Thus coder B said “Positive" 60% of the time

So the expected probability that both would say “Positive” at random

is: 0.5*0.6=0.3

Similarly, the expected probability that both would say “Negative” at

random is: 0.5*0.4=0.2

Overall random agreement probability is the probability that they

agreed on either Positive or Negative, i.e. (pe)=0.3+0.2=0.5

Constructing a training set

Confusion matrix: Coder B
Coder A Positive Negative
Positive
Negative

20
10

5
15

Applying the formula for Cohen's Kappa we therefore get:

✓ k=(po-pe)/(1- pe)=(0.7-0.5)/(1-0.5)=0.4

✓ Not such a good outcome after all…

In R, you can use the irr package to easily compute

Cohen's Kappa for a given training-set. If you are

interested about it, drop me an email!

Constructing a training set

The golden-rules for a good training-set, a brief resume:

1. Develop a good coding book!

2. Sample good your training-set!

3. Check (always) inter-coder reliability! So for example, if

you have 1,000 texts in your training-set and 2 coders,

always be sure that a sub-sample (say 100 hundreds) of

the texts that will be coded by the coders actually overlap

among themselves, so that you can run an inter-coder

reliability test! Why not running with all the 1,000 texts the

inter-coder reliability test? It would be a waste of time!

Constructing a training set

Remember: if you get a bad value for K can mean two

different things:

✓ either one or both coders are doing a bad job

✓ or there is still some ambiguity in the coding book that

generates disagreement between coders…

So if you get a bad inter-coder reliability statistics due to

the latter reasons, what do you have to do?

Go back to the coding scheme to improve it!

