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Validation



Validation

Since the ultimate goal of supervised learning is to find 

generalizable patterns of association, models must be 

selected based on their ability to generate good out-of-

samples predictions (i.e., good predictions on the test-

set)

However, it is impossible to evaluate a model's performance 

on the universe of test-set documents (i.e., you do not 

know by definition their “true” class-labels after all!), so an 

approximate measure of performance must be devised



Validation

Supervised methods are designed to automate the hand 

coding of documents into categories as we have already 

noticed

If a method is performing well, it will therefore directly 

replicate the hand coding. If it performs poorly, it will fail 

to replicate the coding – instead introducing serious errors

This clear objective implies a clear standard for evaluation: 

comparing the output of machine coding to the output of 

hand coding. From here the idea of validation!



Validation

The ideal validation procedure would divide the data into 

three subsets

1. Initial model fitting would be performed on the training-set

2. Once a final model is chosen, a second set of hand-coded 

documents - the validation set - would be used to assess 

the performance of the model

3. The final model would then be applied to the test to 

complete the classification



Validation

This approach to validation is difficult to apply in most 

settings. But cross-validation (also called: K-fold 

validation) can be used to replicate this ideal procedure 



Validation

In K-fold cross-validation, the training set is randomly 

partitioned into some groups (say two: K1 and K2)

For each group, the first model is trained on K1, then applied 

to the K2 to assess performance; similarly a model is 

trained on the K2 and then applied to K1 to assess 

performance

Then you take the average across the results you get in the 

two scenarios



Validation

And if you want to run a K-fold cross-validation with K 

larger than 2? 

The algorithm is as follow:

1. Randomly split the data set into k-subsets (or k-fold) (for 

example 5 subsets)

2. Reserve one subset and train the model on all other subsets 

(4 in this case)

3. Test the model on the reserved subset and record the 

prediction error

4. Repeat this process until each of the k subsets has served 

as the test set

5. Compute the average of the k recorded errors. This is called 

the cross-validation error serving as the performance 

metric for the model



Validation

So, for example, with K-fold cross-validation=5… 
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Validation

How to choose right value of k?

Lower value of k is more biased and hence undesirable. On 

the other hand, higher value of k is less biased, but can 

suffer from large variability

In practice, one typically performs k-fold cross-validation 

using k = 5 or k = 10, as these values have been shown 

empirically to yield test error rate estimates that suffer 

neither from excessively high bias nor from very high 

variance



Validation

REMEMBER: Cross-validation is the only way to 

control if the ML algorithm you are using is doing a 

good job or not (unless you are ready to believe in that 

by fiat)!

True: in Random Forest we can also focus on the OOB 

sample, still the final results are not reliable as via 

cross-validation (i.e., you focus only on those rows not 

included in the bootstrapped trees, while  by doing CV 

you are ensured that all the rows, i.e., documents of 

your corpus, are included in the analysis)



Validation

Moreover, cross-validation avoids overfitting by 

focusing on out-of-sample prediction and selects the 

best model for the underlying data from a set of 

candidate models



Validation

Which statistics (or performance metrics) should we use 

to assess model performance?

There are several of them, but we are going to focus on 

three metrics for individual classifiers with text-analysis



Validation

Accuracy: proportion of correctly classified documents

While of course we want this score to be as high as possible, 

it can also be important to look at the two components 

which make up that score, known as recall and precision

Note moreover that accuracy refers to the overall model 

performance. Recall and precision refers to the 

performance of your model with respect to a specific 

category k



Validation
Recall or Sensitivity (for a category k) is a measure of 

what proportion of documents of a given category the 

algorithm correctly identified (i.e., minimize false 

negatives)

For example, if there were 10 documents of the category 

“positive” in the data set, and the algorithm correctly 

identified 8 of them, we would say that this algorithm 

has “recall of 0.8 for the category positive” 

✓ given that a human coder labels a document as 

belonging to category k, what is the chance the 

machine identifies the document?



Validation

Precision or Positive Predictive Value (for a category k) 

on the other hand is a measure of how many of the 

times the algorithm identified a category were actually 

correct, as against how many times were false positives 

(i.e. minimize false positives)

In the previous example, where the algorithm correctly 

identified 8 of the 10 documents as positive, perhaps 

the algorithm also miss-identified 4 other documents as 

positive - so 8 out of its 12 positive classifications were 

correct, allowing us to say that it has a “precision of 

0.667 for the category positive” 

✓ given that the machine guesses category k, what is the 

probability that the machine made the right guess?



Validation

If you find market differences between the recall and 

precision (for example, with a recall rate >> precision) 

implies that your algorithm guesses too often that a 

document belongs to category k 

The result is that it labels a large portion of the human 

coder’s as k correctly (and so you have a high recall 

rate). But it also includes several documents that humans 

label differently (and so you have a low precision)



Validation

The aggregate of the recall and precision scores for a 

category is known as the f1 score

More precisely, the traditional F-measure or balanced F-

score (f1) is the harmonic mean of precision and recall:

f1 = (2 * precision * recall) / (precision + recall)…

…where the highest level of performance (of f1) is equal to 1 

and the lowest 0 



Validation

The average of the f1 scores for all the categories is 

another reasonable rough measurement of the 

performance of the algorithm (and often more than

accuracy alone as we will see below!)

However, before using the algorithm for any serious analysis 

work, it is always advisable also to take a look at the 

precision and recall scores for individual categories - you 

may find that a category you are planning to use in your 

analysis actually has very high rate of false-positive or 

false-negative identifications, which could cause serious 

problems for your results

Let’s an example on how to compute the statistics we 

discussed up to now from the Confusion matrix



Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionBlack=
TrueB+ FalseB

TrueB

RecallBlack =
TrueB + FalseW

TrueB

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1Black =
precisionB+ recallB

2 * precisionB* recallB

Think

horizontally

Think

vertically



Performance metrics

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionBlack =
800+ 100

= 0.88
800  

RecallBlack =
800+ 50

= 0.94
800

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 Black =
.88+ .94

= 0.91
2*.88*.94



Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionWhite =
TrueW+ FalseW

TrueW

RecallWhite =
TrueW + FalseB

TrueW

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1White =
precisionW + recallW

2 * precisionW * recallW

Think

horizontally

Think

vertically



Performance metrics

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionWhite =
50+ 50

= 0.5
50

RecallWhite =
50+ 100

= 0.33
50

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 White=
.5+ .33

= 0.39
2*.5*.33



Performance metrics
In this example you are going to have a single Accuracy 

value=0.85

However, you could also take the average of the F1 scores 

for the classes as another measure of the performance of 

the algorithm

In our case: (.91+.39)/2=.65

You see the difference here between Accuracy and the 

averaged F1 score!

This difference is due that we are doing well with the Black 

class, but relative poorly with the White class

Rule-of-thumb: everytime you notice a market difference 

between Accuracy and F1 score, there are problems for 

your model!!!



Performance metrics

Accuracy = 95 + 1

95+ 4 + 1 + 1
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
1

Accuray seems pretty high, but compared to a natural

benchmark (i.e., to a dull algorithm that simply assigns all

the observations to the most frequent class - here cats)? 

In this case a random draw would produce once again 95% 

of Accuracy (i.e., 96/101)! Not so impressive after all…

Let’s see another example



Performance metrics

Accuracy = 95 + 1

95+ 4 + 1 + 1
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
1

Moreover, stark contrast between the two classes:
PrecisionCats = 95/99=.96

RecallCats = 95/96=.99

F1Cats =.97

PrecisionDogs = 1/2=.5

RecallDogs = 1/5=.2

F1Dogs =.29

Avg. F1=.63

Let’s see another example



The imbalanced data-set riddle
In this example (as in the previous one…), Accuracy 

does not turn to be a reliable metric for the real 

performance of a classifier

This happens with a greater likelihood precisely when 

your data set is highly unbalanced (i.e., a data set 

that contains many more samples from one class than 

from the rest of the classes) 

Indeed, if you have a very imbalanced data set you 

could have a very hard day with any ML algorithm. 

Why?



The imbalanced data-set riddle
In this scenario, classifiers can have a good accuracy on 

the majority class but a very poor accuracy on the 

minority class(es) due to the influence that the larger 

majority class produces 

That is, the model will perform badly because the model is 

not trained on a sufficient amount of data representing 

the minority class(es), so a particular classifier might 

classify almost all the observations as belonging to 

the majority class (as cats in our previous example)

This of course will affect negatively your out-of-sample 

prediction!



The imbalanced data-set riddle

The existence of a category Ck extremely frequent in a 

training-set can negatively affect 𝑝 𝑪 𝑾



The imbalanced data-set riddle
And so?

Best strategy: go back to your training-set and improve on it

by collecting more texts for the minority categories to 

decrease the overall level of class imbalance

And if you cannot? As a second-best strategy, you can 

always try to resample the original training dataset 



The imbalanced data-set riddle
Resampling is done either by oversampling the minority class 

and/or under-sampling the majority class until the classes 

are approximately equally represented

Even though both approaches address the class imbalance 

problem, they also suffer some drawbacks. The random 

undersampling method can potentially remove certain 

important data points (and therefore information!), and 

random oversampling can lead to overfitting



The imbalanced data-set riddle
Other possibility: Synthetic data generation such as…

SMOTE: Synthetic Minority Over-sampling Technique has 

been designed to generate new samples that are coherent 

with the minor class distribution

The main idea is to consider the relationships that exist 

between samples and create new synthetic points along 

the segments connecting a group of neighbors



The imbalanced data-set riddle

An example with 2 features



The imbalanced data-set riddle
The SMOTE algorithm works directly on the DfM, by imputing

values to new «rows» for each feature includeded in the 

DfM

An alternative to SMOTE when dealing with text classification

is to use some NLP algorithm that learns the relationship 

between words in the texts related to a given class, and 

then producing some new synthetic texts related to that

class

If you are interest in this topic, drop me an email to get an 

example! 



Validation: another example 

with 3 categories

Here Accuracy is equal to the ratio between the sum of the 

diagonal (i.e., the sum of «True Positive») and the total number of 

observations, i.e., (5+3+11)/(5+2+3+3+2+1+11)=0.704



Validation
For each category k we can move from here

to here (example for the “cat” category)



Validation
Then:

In the case, Precision for the cat class is: 5/(5+2)=0.71

Recall for the cat class is: 5/(5+3)=0.625

f1 for the cat class is: 2*(0.625*071)/(0.625+071)=0.66

You can do the same thing for the dog and the rabbit cases, 
and then averaging across values to have a sense of the 
overall performance of your model



Validation

Depending on the application, scholars may conclude that 

the supervised method is able to sufficiently replicate 

human coders. A largely employed rule-of-thumb is getting 

accuracy>.85 for example (or f1>.75) (at least when you 

are dealing with just 2 categories)

Or, additional steps can be taken to improve accuracy, 

including trying to apply other ML algorithms or…



Validation

…as already underlined, most algorithms also have a range 

of “hyper-parameters” (or “tuning parameters”) –

assumptions and modifiers which are used to fine-tune the 

model and which can be set to different values prior to 

training – that can significantly impact performance 

(remember about the number of trees in RF)

Finding the right set of hyper-parameters for a certain task

and a specific data set is also largely a case of trial and 

error, and it can only be done once again via cross-

validation!



Validation

Some packages in R (such as Caret or h2o or the same 

Quanteda with the library quanteda.classifiers) 

provide  ways to automate this task; this is known as a 

“grid search”, allowing researchers to exhaustively search 

through every combination of a set of hyper-parameters to 

find the best performing model

This process can take a lot of time – often in the order of 

several hours for algorithms with complex sets of 

parameters – but often yields better performance than the 

default parameter set



Validation

Summing up: the purpose of cross-validation is model 

checking!

Accordingly, cross-validation allows you to:

✓ select among different machine-learning 

algorithms...(remember the No Free Lunch Theorem! 

No machine learning algorithm is always better at 

predicting new, unobserved, data points universally)

✓ ..and to identify the better hyperparameters setting for 

a given ML algorithm

As a result always run a cross-validation before classifying 

the test-set to select the best ML algorithm given your 

corpus!



Validation: a summary

Two possible routes in this regard according to how you want 

to deal with the hyper-parameters:

First route (to success…)

a) You keep the default hyper-parameters of your ML 

algorithms;

b) you run a CV on each of such ML algorithms

c) you select the one (or two) with the best performance on 

CV

d) you fine-tune the hyper-parameters on such model(s)

e) you re-run CV just on them

f) you keep the ML algorithm that performs better in the CV



Constructing a training set

For supervised problems, the researcher is aiming to classify 

documents into a set of known or assumed categories 

based upon rules or information that can be learned from 

the training set

This requires labels in the training set from which to infer 

categories in the test set

The most important step in applying a supervised learning 

algorithm is therefore constructing a reliable training set, 

because no statistical model can repair a poorly 

constructed training set! 

If the training set is poorly constructed, the supervised 

algorithms will simply replicate such poorly construction!



Constructing a training set
(1) creating and executing a coding scheme: 

Best practice is to iteratively develop coding schemes

Initially, a concise codebook is written to guide coders, who 

then apply the codebook to an initial set of documents

For example, suppose you want to code the FB posts of 

politicians as either employing a populist language or 

otherwise. Accordingly, you need to advance a clear 

definition of populist language, with possible some 

examples, to show to your coders

When using the codebook, particularly at first, coders are 

likely to identify ambiguities in the coding scheme (for 

example: how to classify a post that discusses about 

political corruption, but that praises the role of science?)



Constructing a training set
(1) creating and executing a coding scheme: 

While doing this, always define a number of exhaustive (and 

exclusive) categories – no overlooked categories should 

be present!

Suppose you want to classify tweets discussing about ISIS as 

either positive, negative or neutral. Then suppose that in the 

training-set you discover a sub-set of tweets that uses the 

hashtag #Isis as a way to make more viral tweets on a 

completely different topic. In this instance, you could include a 

category off-topic to label such tweets. In a different situation, 

you can also decide to include a category “Others”, wherein 

classifying the texts that do not deal with any of the theoretically 

interesting categories you have identified for your research

ML algorithms must learn to classify also those categories!



Constructing a training set

(1) creating and executing a coding scheme: 

This subsequently leads to a revision of the codebook, 

which then needs to be applied to a new set of documents 

to ensure that the ambiguities have been sufficiently 

addressed

Only after coders apply the coding scheme to documents 

without noticing ambiguities is a “final” scheme ready to be 

applied to the data set



Constructing a training set

(2) sampling documents:

Basically all ML methods aiming at individual classification 

implicitly assume that the training set is a random 

sample from the population of documents to be coded

This is because Supervised learning methods use the 

relationship between the features in the training set to 

classify the remaining documents in the test set (out-of-

sample predictions)



Constructing a training set

(2) sampling documents:

This presents particular difficulty when…

…all the data are not available at the time of coding: 

either because it will be produced in the future or because 

it has yet to be digitized

Per-se, this could be particularly problematic in dealing with 

any semantic change, which is the difference in the 

meaning of language between the training and test sets



Constructing a training set

(2) sampling documents:

For example, we can have emergent discourse, where new 

words and phrases, or the meanings of existing words and 

phrases, appear in the test set but not the training set



Constructing a training set

emergent discourse example:



Constructing a training set

(2) sampling documents:

…and vanishing discourse, where the words, phrases, and 

their meanings exist in the training set but not in the test 

set

How to face this risk?

Keep updating the training-set (if your test-set is still to 

come...)!



Constructing a training set

(2) sampling documents:

Furthermore, Supervised methods need enough 

information to learn the relationship between words and 

documents in each category of a coding scheme

Hopkins and King (2010) offer five hundred as a rule of 

thumb with one hundred documents for each class-label 

probably being enough



Constructing a training set

(2) sampling documents:

Still the number necessary will depend upon:

a) the specific application of interest. For example, as the 

number of categories in a coding scheme increases, the 

number of documents needed in the training set also 

increases



Constructing a training set
(2) sampling documents:

b) Moreover, if a category does not occur, or occurs 

extremely rarely, in the training set, there is insufficient 

opportunity to “learn” about this category and its 

properties, which will in turn interfere with the process of 

classifying test-set documents into this category correctly

When attempting to detect small changes or rare 

categories, therefore, increasing the probability that they 

are observed in the training set often means increasing the 

size of the training set relative to the test set (remember 

the curse of highly imbalanced training-set!)

That also means that you can decide to collapse two different 

categories into one to increase their volume (as far as 

these two categories are not your main theoretical focus!)



Constructing a training set

(2) sampling documents:

c) You also have to consider the risk of a lack of textual 

discrimination. This happens where the language used in 

documents falling in the different pre-defined categories is 

not clearly distinguishable

Lack of textual discrimination among categories can occur 

because of heterogeneity in how authors express 

category-related information or a divergence between how 

authors of the documents express this information and 

how the analyst conceptualizes the categories

Also this factor affects the appropriate size of the training-set



Constructing a training set

(3) checking human-tagging reliability:

While labeling training data often requires the use of human 

coders to sort texts into desired categories, human coding 

lacks consistency and reliability both within and across 

individuals, above and beyond the time and expense 

required to complete the task

Therefore always run an inter-coder reliability text!!!



Constructing a training set

(3) checking human-tagging reliability:

What is inter-coder (or inter-rater) reliability?

Intercoder reliability is the extent to which 2 different 

researchers agree on how to code the same content

It’s often used in content analysis when one goal of the 

research is for the analysis to aim for consistency and 

validity

Intercoder reliability ensures that when you have multiple 

researchers coding a set of data, that they come to the 

same conclusions



Constructing a training set

One common statistics used is Cohen's kappa coefficient (κ)

k is a more robust measure than simple percent agreement 

calculation, as it takes into account the possibility of the 

agreement occurring by chance

For example, if you have 2 coders, and one of them is doing 

a good job in coding, while the other is always choosing 

the class label completely at random, you are going still to 

get some percent agreement between the two coders

However this percent agreement would occur just by chance!



Constructing a training set

K is estimated as (po-pe)/(1- pe)

where pois the relative observed agreement among raters 

(identical to accuracy), and pe is the hypothetical probability 

of chance agreement, using the observed data to calculate 

the probabilities of each observer randomly seeing each 

category

If the raters are in complete agreement then k=1. If there is no 

agreement among the raters other than what would be 

expected by chance (as given by pe), k=0. It is possible for 

the statistic to be negative, which implies that the agreement 

is worse than random

Usually a reasonable value for k is larger than .6 (but larger than 

.8 would be far better)



Constructing a training set

Confusion matrix:

Coder B
Coder A Positive Negative
Positive
Negative

20
10

5
15

Observed proportionate agreement (po): (20+15)/50=0.7

✓ A good outcome? Well, not necessarily…

Let’s see an example, with 2 coders, 2 categories, and 50 texts

to code for each coders



Constructing a training set

Confusion matrix: Coder B
Coder A Positive Negative
Positive
Negative

20
10

5
15

And the probability of a random agreement (pe)? 

✓ Coder A said “Positive" to 25 texts and “Negative" to 25 texts. 

Thus reader A said “Positive" 50% of the time

✓ Coder B said “Positive" to 30 texts and "Negative" to 20 texts. 

Thus coder B said “Positive" 60% of the time

So the expected probability that both would say “Positive” at random 

is: 0.5*0.6=0.3

Similarly, the expected probability that both would say “Negative” at 

random is: 0.5*0.4=0.2

Overall random agreement probability is the probability that they 

agreed on either Positive or Negative, i.e. (pe)=0.3+0.2=0.5



Constructing a training set

Confusion matrix: Coder B
Coder A Positive Negative
Positive
Negative

20
10

5
15

Applying the formula for Cohen's Kappa we therefore get:

✓ k=(po-pe)/(1- pe)=(0.7-0.5)/(1-0.5)=0.4

✓ Not such a good outcome after all…

In R, you can use the irr package to easily compute 

Cohen's Kappa for a given training-set. If you are 

interested about it, drop me an email!



Constructing a training set

The golden-rules for a good training-set, a brief resume:

1. Develop a good coding book!

2. Sample good your training-set!

3. Check (always) inter-coder reliability! So for example, if 

you have 1,000 texts in your training-set and 2 coders, 

always be sure that a sub-sample (say 100 hundreds) of 

the texts that will be coded by the coders actually overlap 

among themselves, so that you can run an inter-coder 

reliability test! Why not running with all the 1,000 texts the 

inter-coder reliability test? It would be a waste of time!  



Constructing a training set

Remember: if you get a bad value for K can mean two 

different things: 

✓ either one or both coders are doing a bad job

✓ or there is still some ambiguity in the coding book that 

generates disagreement between coders…

So if you get a bad inter-coder reliability statistics due to 

the latter reasons, what do you have to do?

Go back to the coding scheme to improve it!


