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Machine learning

Machine learning is defined as the “field of study that gives 

computers the ability to learn without being explicitly 

programmed” (Samuel 1959)

In this context “learning” can be viewed as the use of 

statistical techniques to enable computer systems to 

progressively improve their performance on a specific task 

from data without being explicitly programmed (Goldberg 

and Holland 1988)



Machine learning

To be able to learn how to perform a task and become better 

at it, a machine should…

✓ …be provided with a set of example information (inputs) 

and the desired outputs. The goal is then to learn a 

general rule that can take us from the inputs to the outputs



Machine learning

In our case, our aim is to do text classification

Therefore, machine learning algorithms (when dealing with 

text classification methods) refer to those techniques that 

learn how to map a set of inputs (e.g., features within 

documents) to a predicted class as the output in a pre-

coded training set before classifying the data in the test set



Beware of overfitting!

However…it is typically easy to learn even complicated 

relationships in-sample that is, relationships that are 

conditional on the training set

The goal, however, is to learn relationships for which the 

expected generalization error (i.e. the error that can be 

expected to ensue when learned relationships are 

evaluated out-of-sample, on a test set of observations not 

involved in the learning process) is low 



Beware of overfitting!

In fact, while it is always possible to arbitrarily reduce training 

error (i.e. error as computed using the training sample) by 

making models arbitrarily complex…

…such complexity typically results in high expected 

generalization error, as models start to overt their training 

data (i.e. they start to pick up on idiosyncratic relationships 

that conditional on the set of observations used to train the 

models)…

…that is, a supervised learning algorithm begins to overfit

the data!



Beware of overfitting!

Overfitting is the production of an analysis that corresponds 

too closely to a particular set of data, and may therefore 

fails to fit additional data or predict future observations 

reliably

Overfitting usually arises when a very complicated model 

faithfully reflects aspects of the design data to the extent 

that idiosyncrasies of that data, rather than merely of the 

distribution from which the data arose, are included in the 

model



Beware of overfitting!

Although the polynomial 

function (the blue line) is 

a perfect fit, the linear 

function can be 

expected to generalize 

better beyond the fitted 

data!



Beware of overfitting!



Beware of overfitting!

✓ Model is too complex, describes noise rather than signal 

(Bias-Variance trade-off)

✓ Focus on features that perform well in training-set data but may not 

generalize 

✓ In-sample performance better than out-of-sample performance



Individual methods

Several different possible machine learning algorithms are 

available out there

Today we will offer an intuitive introduction to the following 

algorithms: 

• Naïve Bayes classifier

• Support Vector Machine

• Random Forest

Later we will discuss about about Regularized regression and 

Gradient Boosting. Unfortunately we have no time to discuss

about Neural Networks and Deep Learning algorithms 

(among the others…)



Naïve Bayes classifier
Naïve Bayes classifier: the algorithm allows us to predict a 

class, given a set of features using (Bayes) probability 

theorem

But what do we mean by Bayes probability theorem?

Bayesian probability incorporates the concept of conditional 

probability, the probability of event A given that 

event B has occurred, i.e., p(A|B)

Within a text-analytics framework, the goal is to infer the 

probability that document i belongs to category k given 

word profile Wi (i.e., the probability of a text belonging to 

category k given that its predictors – features – values are 

x1,x2,…,xp. This can be written as p(Ck|x1, x2,…,xp) )



Naïve Bayes classifier
More formally, the Bayesian formula for calculating this 

probability is:

𝐶𝑘|𝑾𝑖 =
𝑝 𝐶𝑘 ∗ 𝑝 𝑾𝑖|𝐶𝑘

𝑝 𝑾𝑖

In plain English:

𝑝 𝐶𝑘 =prior probability of the outcome

𝑝 𝑾𝑖|𝐶𝑘 = conditional probability or likelihood

𝑝 𝑾𝑖 =evidence (the word profile we observe)

𝑝 𝐶𝑘|𝑾𝑖 =posterior probability. By combining our observed 

information, we are updating our a priori information on 

probabilities to compute a posterior probability that an 

observation has class 𝐶𝑘



Naïve Bayes classifier
In other words, the Bayesian formula is simply:

Posterior =
𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

From above, we can drop 𝑝 𝑾𝑖 from the denominator since 

it is a constant across the different categories



Naïve Bayes classifier

An example: let’s say we have a training-set on 1000 pieces 

of fruit. The fruit being a Banana, Orange or some Other 

fruit. We know 3 variables of each fruit, whether it’s long 

or not, sweet or not and yellow or not:



Naïve Bayes classifier

From the table we know that, in our training-set: 50% of the fruits 

are bananas; 30% are oranges; 20% are other fruits (our priors!)

Based on our table, we can also say the following:

Out of 500 bananas 400 (0.8) are Long, 350 (0.7) are Sweet and 

450 (0.9) are Yellow; Out of 300 oranges 0 are Long (0.0), 150 

(0.5) are Sweet and 300 (1.0) are Yellow; From the remaining 

200 fruits, 100 (0.5) are Long, 150 (0.75) are Sweet and 50 

(0.25) are Yellow. All these values refer to conditional 

probabilities / likelihood!



Naïve Bayes classifier

Now let’s say we’re given the variables of a piece of fruit and 

we need to predict the class (out-of-sample prediction!)

If we’re told that the additional fruit is Long, Sweet and 

Yellow, we can classify it using the Bayes formula and 

subbing in the values for each outcome, whether it’s a 

Banana, an Orange or Other Fruit

The one with the highest probability (score) being the winner 

class!



Naïve Bayes classifier

p(Banana|Long, Sweet, 

Yellow)=p(Long|Banana=0.8)*p(Sweet|Banana=0.7)*p(Yell

ow|Banana=0.9)*p(Banana=0.5)=0.252

p(Orange|Long, Sweet, 

Yellow)=p(Long|Orange=0)*p(Sweet|Orange=0.5)*p(Yello

w|Orange=1)*p(Orange=0.3)=0

p(Other|Long, Sweet, 

Yellow)=p(Long|Other=0.5)*p(Sweet|Other=0.75)*p(Yellow

|Other=0.25)*p(Other=0.2)=0.01875

In this case, based on the highest score, we can classify this 

Long, Sweet and Yellow fruit as a Banana



Naïve Bayes classifier

Note a possible problem here: given that naïve Bayes uses 

the product of variable probabilities conditioned on each 

class, we run into a serious problem when new data 

includes a variable value that never occurs for one or 

more levels of a response class (as it happens with the 

feature “long” for the Orange)

What results is 𝑝 𝐿𝑜𝑛𝑔|𝑂𝑟𝑎𝑛𝑔𝑒 =0 for this individual variable 

and this zero will ripple through the entire multiplication of 

all variable and will always force the posterior probability to 

be zero for that class

This is clear a HUGE PROBLEM when dealing with a sparse 

DfM (as it is usually the case)!



Naïve Bayes classifier

A solution to this problem involves using the Laplace 

smoother

The Laplace smoother adds a small number to each of the 

counts in the frequencies for each feature, which ensures 

that each feature has a nonzero probability of occurring for 

each class

Typically, a value of 1 for the Laplace smoother is employed, 

but this is a tuning parameter to incorporate and optimize 

with cross validation (more on this later on!)



Naïve Bayes classifier
Why Naïve?

Cause it assumes that every feature being classified is 

independent of the value of any other variable given the 

response variable

In the previous example each of the three variables (Long, 

Sweet, Yellow) are considered to contribute independently 

to the probability that the fruit is a Banana, regardless of 

any correlations between features 

By making this assumption we can simplify our calculation 

such that the posterior probability is simply the product of 

the probability distribution for each individual variable 

conditioned on the response category



Naïve Bayes classifier
Why Naïve?

Variables, however, aren’t always independent!

However, although the model is clearly wrong – quite often 

features are not conditionally independent - it has proven 

to be a useful classifier for a diverse set of tasks 

The same is true for text analysis: assuming that features 

(i.e., words) are generated indipendently is wrong given 

that the use of words is highly correlated in any data set. 

However, Naïve Bayes classifier can still be useful 

(remember the First Principle of text-analysis!)



Naïve Bayes classifier
Naïve Bayes classifier algorithm has a simple, but powerful 

(and fast!), approach to learning the relationship between 

words and categories

Moreover, it has been shown to perform surprisingly well with 

very small amounts of training data that most other 

classifiers, would find significantly insufficient 

As a result, if you find yourself with a small amount of training 

data Naïve Bayes would be a good bet!

Likewise, Naïve Bayes’ simplicity prevents it from fitting its 

training data too closely and therefore does not tend 

toward overfitting especially on smaller datasets like other 

approaches do



Naïve Bayes classifier
However, Naïve Bayes classifier also behaves differently on 

the other end of the spectrum, when provided with large 

amounts of training data

As it is fed increasing quantities of training data, the 

performance of the Naïve Bayes classifier plateaus above 

a certain threshold

Its simplicity prevents it from benefiting incrementally from 

training data past a certain point



Support Vector Machine (SVM)

SVM is a generalization of Nearest Neighbor (NN) 

algorithm

NN is a rather simple algorithm. You are given a training 

data consisting of m training documents 

𝒙1, 𝑦1 , 𝒙2, 𝑦2 , … 𝒙𝑚, 𝑦𝑚 , where x is a vector of 

possible variables and 𝑦𝑖 is the class label (the 

category) of 𝑖𝑡ℎ



Support Vector Machine (SVM)
For example, in the figure below, we have two variables 

Xs: each document can be either label 1 (blue points), 

or label −1 (red points)



Support Vector Machine (SVM)

Now you are given a test point (the black x below), and 

you have to predict its class, whether it belongs to red 

class or blue class



Support Vector Machine (SVM)

The NN algorithm finds the nearest training point to this 

test point (by measuring the distance of test point 

from every training point), and the class predicted of 

test point is the same as of nearest training point

The lower the distance, the higher the similarity between 

two points



Support Vector Machine (SVM)

For example, the circled point is closest to test point, and 

hence class of test point is blue



Support Vector Machine (SVM)

Two observations about NN algorithm:

✓ We don’t do any computation alone with training points. 

Only when a test point comes, we compute similarity 

from every training point. This is a big disadvantage of 

NN algorithm

• Consider having millions of training points, and for 

every test point, we have to calculate millions of 

similarities from test point. We calculate similarities 

from the training points which are very far from test 

points, which are not really required

✓ We don’t give any importance to other training points 

except the nearest one



Support Vector Machine (SVM)

SVM remove each of these two problems

Instead of finding similarity from every training point of any 

test point, we calculate similarity from only a subset of 

training points (or documents, when dealing with text 

classification), which we compute in the training phase

These selected training points are called support 

vectors, since only these points will support our 

decision of selecting the class of a test point

Our hope is that our training phase finds as few as support 

vectors so that we have to compute fewer number of 

similarities



Support Vector Machine (SVM)

Moreover, once we have selected support vectors, we 

assign a weight to each support vector, which basically 

tells how much importance we want to give to that 

support vector while making our decision

So unlike NN, we don’t give importance to only a single 

training point (i.e., document, given that we are dealing 

with text classification), instead we give each support 

vector a separate importance



Support Vector Machine (SVM)

But how to find a support vector?

Intuition: first, we need to find the best line that separates

observations of different classes!



Support Vector Machine (SVM)

This is harder to visualize in more than two dimensions. In 

this case you need an hyperplane

More formally, an hyperplane is n-1 dimensional subspace 

of an n-dimensional space (a line in 2D, a plane in 3D 

and an hyperplane in higher dimensions)

But not only that…



Support Vector Machine (SVM)
We want to find an hyperplane that best separates two 

classes of points with the maximum margin (i.e., we 

try to find that separating hyperplane from which 

distance of closest training points is maximum) thus 

producing the “cleanest" possible sorting of 

observations

That is, our goal is to identify the hyperplane that 

maximizes the total distance between the line and the 

closest point in each class

Essentially, it is a constrained optimization problem 

where the margin is maximized subject to the 

constraint that it perfectly classifies the data

Intuitively, the "maximum-margin" line allows for noise and 

is most tolerant to mistakes on either side. So that a 

good thing to look for!



Support Vector Machine (SVM)

In the previous example, there are an infinite number of 

lines that will accomplish this task, but only one 

"maximum-margin" line



Support Vector Machine (SVM)

Another example: suppose that we want to split the below 

red circles from the green ones by drawing a line



Support Vector Machine (SVM)



Support Vector Machine (SVM)
The data points that kind of "support" this hyperplane on 

either sides (i.e., the closest training points to the line) 

are called the support vectors

Support Vectors are simply the co-ordinates of individual 

observations (i.e., in text analysis: documents)

In the figure, there are only 3 support vectors, so at the 

test time, we will compute similarity test point on only 

these 3 support vectors



Support Vector Machine (SVM)

So far, we have assumed that a hyperplane can perfectly 

separate instances across classes

When this is not the case, we must relax the constraint 

imposed on the distances between points and the 

hyperplane, and allow for a certain amount of slack

This slack will allow for instances to be within the margin, 

or even to cross the (quasi)separating hyperplane



Support Vector Machine (SVM)
In this respect we can define a loss function that ignores 

those errors which are situated within the certain 

distance of the true value

This type of function is often called – epsilon (ε) intensive-

loss function. The figure shows an example of an 

hyperplane with epsilon intensive-loss band



Support Vector Machine (SVM)

The width of the intensive-loss zone can of course be 

different! 



Support Vector Machine (SVM)

This function allows us to identify the cost of the errors on 

the training points

These are zero for all points that are inside the band (i.e., 

that are within ε distance of the observed value), and 

larger than 0 for all points outside of it

This penalty for the errors is known as C (i.e., cost) and it 

quantifies the penalty associated with having an 

observation on the wrong side



Support Vector Machine (SVM)

With no perfect separation, the goal is therefore to minimize 

our sum of classification errors, conditioning on the 

tuning parameter C (i.e., cost) that indicates tolerance 

to errors

In particular, parameter C determines the trade-off 

between the model complexity and the degree to which 

deviations larger than epsilon are tolerated in 

optimization formulation



Support Vector Machine (SVM)

Larger values of C (ex. C = 1000 , a value which 

penalizes a lot the model for misclassified 

observations) thus result in greater focus of attention on 

the points located very close to the decision boundary 

(for a given ε), i.e., only those instances near the 

class boundary play a big role its definition, while 

those that remain far away from the boundary have 

little effect on its location and direction 

…while smaller values of C (ex. C = 0.01, a value which 

doesn’t penalize the model much for misclassified 

observations) involve an attention also on data points 

farther away (for a given ε). It is these points that now 

can also become support vectors



Support Vector Machine (SVM)

An example with three different values for C (and epsilon 

fixed to 0.1)
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Support Vector Machine (SVM)

But what if we don't want (or cannot) fit a straight line to 

find support vectors (for example in 2 dimensions)? 

For instance, in the figure below, although the two classes 

are easily recognized as occupying different regions of 

feature space, no hyperplane across it would result in a 

good separation, The optimal decision boundary, which 

in this case corresponds to a circle, is not linear



Support Vector Machine (SVM)

So what to do? Move to non-linearity!

We achieve this not by drawing curves, but by "lifting" the 

features we observe into higher dimensions…

….i.e., instead of operating on the space defined by the 

original set of predictors (where no linear boundary can 

correctly separate classes of the target outcome), we 

can operate on a transformed space of higher 

dimensions in which linear separability becomes (again) 

possible



Support Vector Machine (SVM)

For example, if we can't draw a line in the space (x1, x2) 

then we may try adding a third dimension, (x1, x2, x1 * 

x2)

This is known as a kernel trick, that can be linear, radial, 

polynomial, etc.



Support Vector Machine (SVM)

Going back to the previous figure, suppose we add a third 

feature equal to the negative sum of squares of the 

original predictors

This results in the 3D scatterplot depicted on the figure 

below



Support Vector Machine (SVM)

In this new, three-dimensional feature space, observations 

are now arrayed on a conical surface, with instances of 

class B (i.e., the triangles) rising to its apex

It is now easy to define a plane, depicted in gray, that cuts 

the top of this cone and separates instances of the two 

classes

The projection of this separating plane back onto the 

original two-dimensional space generates the circular 

decision boundary we needed

Once again, the SVM's goal is to learn this separating 

hyperplane



Support Vector Machine (SVM)

You can employ different Kernel transformations: 

The linear one works fine with texts



Support Vector Machine (SVM)
SVMs have been most successfully used to solve 

classification problems, particularly when the number of 

predictive features is much larger than the number of 

observations n (as it happens with texts!!!)

For medium-sized datasets, Support Vector Machines 

(SVMs) provides, quite often, an excellent choice



Random Forest classifier

To understand random forest, let’s start with what we mean 

by a Decision tree model

A decision tree is a set of rules used to classify data into 

categories. In particular it is the set of rules which best 

partitions the data

The tree is created by splitting data up by variables and then 

counting to see how many are in each bucket after each 

split



Random Forest classifier

For a single-tree model, the goal is to partition the space of 

predictor features (i.e. the set of all unique combinations of 

predictor values) into B non-overlapping and exhaustive 

regions, R1, R2, . . . , RB, that are relatively 

homogeneous with respect to the outcome y, thus 

improving overall predictive accuracy by sorting 

observations into their respective bins



Random Forest classifier
An example: Given only the gender and weight of a 

person, can we predict whether they are Japanese or 

American (our 2 classes/categories)?

Our training set:

Weight (lbs.)/Sex/Nationality

195 M American

190 M American

160 F American

165 F American

165 M Japanese

160 M Japanese

130 F Japanese

140 F Japanese



Random Forest classifier

Key idea: the procedure to create decision trees is recursive. For 

a set (S) of observations, the following algorithm is applied:

1. If every observation in S is the same class or if S is very small, 

the tree becomes an endpoint, labeled with the most frequent 

class

2. If S is too large and it contains more than one class, find the 

best rule based on one feature to split it into subsets, one for 

each class (different rules can be used in this respect. The aim 

is always the same: the "best" branching rule is the one that 

results in the most information gain)

If you had to go to step 2, apply step 1 to each new subset. If your 

subsets need to go to step 2, apply step 1 to the sub-subsets, 

etc. When everything is split up appropriately (into buckets that 

are very small or entirely one class), you have a set of rules that 

look like a tree!



Random Forest classifier
The decision tree:



Random Forest classifier
Wanna replicate it? Two lines of command!

library(rpart)

library(rattle)

nation <- read.csv("Nationality.csv", stringsAsFactors=FALSE)

fit <- rpart(Nationality ~ Sex + Weight, method="class", data=nation, 

minsplit=2, minbucket=1)

fancyRpartPlot(fit, palettes = c("Greens", "Blues"), sub = "")



Random Forest classifier
In this example the tree can perfectly explain the data

This is a serious limitations! In the real world, there is 

overlap: there are fat (not many, still…) Japanese people 

and skinny (not many, still…) Americans 

In other words, growing a single, deep tree using binary 

recursive splitting can result in a grossly overt model. In 

turn, this high level of in-sample predictive accuracy 

usually comes at the expense of high estimator variance, 

as single trees grown recursively can often times yield 

wildly different predictions as a result of small changes in 

the training set…overfitting!!!

So, what to do?



Random Forest classifier
Trees are usually "pruned" to avoid overfitting. The pruning 

algorithm removes final nodes so that the model is a little 

more general and will tend to generalize better to new, 

unseen data

“Pruning” however is not always an advisable solution to the 

problem of overfitting! 

First, the algorithmic approach to building a tree leaves us 

with no means for assessing uncertainty in our estimates

Second, the sequential nature of the recursive splitting 

algorithm means that the structure of the tree is often 

highly sensitive to small changes in the observations 

included



Random Forest classifier
So what to do to avoid overfitting, prevent results highly 

sensitive to small changes in the observations included in 

the training set, and produce uncertainty in our estimates 

(part 2)?



Random Forest classifier
Bootstrap aggregating (bagging)!

Bagging combines and averages multiple models. Averaging 

across multiple trees reduces the variability of any one tree 

and reduces overfitting, which improves predictive 

performance. Bagging follows three simple steps:

1. Create m bootstrap samples from the training data. 

Bootstrapped samples allow us to create many slightly 

different data sets but with the same distribution as the 

overall training set. The bootstrap samples must not 

necessary have the same size of the original training-set

2. For each bootstrap sample train a single, unpruned 

classification tree

3. Average individual predictions from each tree to create an 

overall average predicted value



Random Forest classifier

One benefit of bagging is 

that, on average, a bootstrap 

sample will contain 63% of 

the training data (a 

parameter you can change!). 

This leaves about 37% of the 

data out of the bootstrapped 

sample. This is the out-of-

bag (OOB) sample

As we will see, we can use 

the OOB observations to 

estimate the model’s 

accuracy, creating a natural 

cross-validation (?!?) 

process: more on this later 

on!



Random Forest classifier

Still, bagging for itself cannot be enough…

Bagging trees introduces a random component in to the tree 

building process that reduces the variance of a single 

tree’s prediction and improves predictive performance

However, the trees in bagging are not completely 

independent of each other since all the original 

predictors are considered at every split of every tree

Therefore, trees from different bootstrap samples typically 

have similar structure to each other (especially at the top 

of the tree) due to underlying relationships

And so? How to reduce the correlation among trees?



Random Forest classifier

The Random Forest (RF) idea! 

Let’s inject more randomness into the tree-growing process. 

RF achieve this in two ways:

Bootstrap: similar to bagging, each tree is grown to a 

bootstrap resampled data set

Split-variable randomization (this is new!): each time a split 

is to be performed, the search for the split variable is 

limited to a random subset of m of the p variables 

(features). This is a tuning parameter. When m=p, the 

randomization amounts to using only step 1 and is the 

same as bagging



Random Forest classifier
The basic algorithm for a random forest can be generalized 

to the following:

1.  Given training data set

2.  Select the number of trees to build (ntrees)

3.  for i = 1 to ntrees do

4.  |  Generate a bootstrap sample of the original data

5.  |  Grow a tree to the bootstrapped data

6.  |  for each split do

7.  |  | Select m variables at random from all p variables

8.  |  | Pick the best variable/split-point among the m

9.  |  | Split the node into two child nodes

10. |  end

11. | Use typical tree model stopping criteria to determine when a tree is complete 

(but do not prune)

12. end



Random Forest classifier

By fitting a tree (with no pruning) to each bootstrapped 

sample and by restricting the choice of each splitting 

variable to a random subset of predictors, we are sure that 

each boostrapped tree provides a truly different 

“perspective" on the prediction problem. All this, of course, 

minimizes the risk of overfitting!

The final prediction is going to be a function of each 

prediction in each random sample, for example it can be 

the average of each prediction

Furthermore, measures of uncertainty can be readily 

produced out of the bootstrapped samples!



R pakcages to install

install.packages("e1071", repos='http://cran.us.r-project.org')

install.packages("caTools", repos='http://cran.us.r-project.org')

install.packages("randomForest", repos='http://cran.us.r-
project.org')

install.packages('caret', repos='http://cran.us.r-project.org', 
dependencies = TRUE)

install.packages("naivebayes", repos='http://cran.us.r-
project.org', dependencies = TRUE)

install.packages("car", repos='http://cran.us.r-project.org’)


