
Big Data Analytics

Lecture 7

Supervised classification methods:

A review of (some) Machine Learning

Algorithms (first part)

Our Course Map

References

✓ Olivella, Santiago, and Shoub Kelsey (2020). Machine

Learning in Political Science: Supervised Learning

Models. In Luigi Curini and Robert Franzese (eds.), SAGE

Handbook of Research Methods is Political Science &

International Relations, London, Sage, chapter 56

3

Machine learning

Machine learning is defined as the “field of study that gives

computers the ability to learn without being explicitly

programmed” (Samuel 1959)

In this context “learning” can be viewed as the use of

statistical techniques to enable computer systems to

progressively improve their performance on a specific task

from data without being explicitly programmed (Goldberg

and Holland 1988)

Machine learning

To be able to learn how to perform a task and become better

at it, a machine should…

✓ …be provided with a set of example information (inputs)

and the desired outputs. The goal is then to learn a

general rule that can take us from the inputs to the outputs

Machine learning

In our case, our aim is to do text classification

Therefore, machine learning algorithms (when dealing with

text classification methods) refer to those techniques that

learn how to map a set of inputs (e.g., features within

documents) to a predicted class as the output in a pre-

coded training set before classifying the data in the test set

Beware of overfitting!

However…it is typically easy to learn even complicated

relationships in-sample that is, relationships that are

conditional on the training set

The goal, however, is to learn relationships for which the

expected generalization error (i.e. the error that can be

expected to ensue when learned relationships are

evaluated out-of-sample, on a test set of observations not

involved in the learning process) is low

Beware of overfitting!

In fact, while it is always possible to arbitrarily reduce training

error (i.e. error as computed using the training sample) by

making models arbitrarily complex…

…such complexity typically results in high expected

generalization error, as models start to overt their training

data (i.e. they start to pick up on idiosyncratic relationships

that conditional on the set of observations used to train the

models)…

…that is, a supervised learning algorithm begins to overfit

the data!

Beware of overfitting!

Overfitting is the production of an analysis that corresponds

too closely to a particular set of data, and may therefore

fails to fit additional data or predict future observations

reliably

Overfitting usually arises when a very complicated model

faithfully reflects aspects of the design data to the extent

that idiosyncrasies of that data, rather than merely of the

distribution from which the data arose, are included in the

model

Beware of overfitting!

Although the polynomial

function (the blue line) is

a perfect fit, the linear

function can be

expected to generalize

better beyond the fitted

data!

Beware of overfitting!

Beware of overfitting!

✓ Model is too complex, describes noise rather than signal

(Bias-Variance trade-off)

✓ Focus on features that perform well in training-set data but may not

generalize

✓ In-sample performance better than out-of-sample performance

Individual methods

Several different possible machine learning algorithms are

available out there

Today we will offer an intuitive introduction to the following

algorithms:

• Naïve Bayes classifier

• Support Vector Machine

• Random Forest

Later we will discuss about about Regularized regression and

Gradient Boosting. Unfortunately we have no time to discuss

about Neural Networks and Deep Learning algorithms

(among the others…)

Naïve Bayes classifier
Naïve Bayes classifier: the algorithm allows us to predict a

class, given a set of features using (Bayes) probability

theorem

But what do we mean by Bayes probability theorem?

Bayesian probability incorporates the concept of conditional

probability, the probability of event A given that

event B has occurred, i.e., p(A|B)

Within a text-analytics framework, the goal is to infer the

probability that document i belongs to category k given

word profile Wi (i.e., the probability of a text belonging to

category k given that its predictors – features – values are

x1,x2,…,xp. This can be written as p(Ck|x1, x2,…,xp))

Naïve Bayes classifier
More formally, the Bayesian formula for calculating this

probability is:

𝐶𝑘|𝑾𝑖 =
𝑝 𝐶𝑘 ∗ 𝑝 𝑾𝑖|𝐶𝑘

𝑝 𝑾𝑖

In plain English:

𝑝 𝐶𝑘 =prior probability of the outcome

𝑝 𝑾𝑖|𝐶𝑘 = conditional probability or likelihood

𝑝 𝑾𝑖 =evidence (the word profile we observe)

𝑝 𝐶𝑘|𝑾𝑖 =posterior probability. By combining our observed

information, we are updating our a priori information on

probabilities to compute a posterior probability that an

observation has class 𝐶𝑘

Naïve Bayes classifier
In other words, the Bayesian formula is simply:

Posterior =
𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

From above, we can drop 𝑝 𝑾𝑖 from the denominator since

it is a constant across the different categories

Naïve Bayes classifier

An example: let’s say we have a training-set on 1000 pieces

of fruit. The fruit being a Banana, Orange or some Other

fruit. We know 3 variables of each fruit, whether it’s long

or not, sweet or not and yellow or not:

Naïve Bayes classifier

From the table we know that, in our training-set: 50% of the fruits

are bananas; 30% are oranges; 20% are other fruits (our priors!)

Based on our table, we can also say the following:

Out of 500 bananas 400 (0.8) are Long, 350 (0.7) are Sweet and

450 (0.9) are Yellow; Out of 300 oranges 0 are Long (0.0), 150

(0.5) are Sweet and 300 (1.0) are Yellow; From the remaining

200 fruits, 100 (0.5) are Long, 150 (0.75) are Sweet and 50

(0.25) are Yellow. All these values refer to conditional

probabilities / likelihood!

Naïve Bayes classifier

Now let’s say we’re given the variables of a piece of fruit and

we need to predict the class (out-of-sample prediction!)

If we’re told that the additional fruit is Long, Sweet and

Yellow, we can classify it using the Bayes formula and

subbing in the values for each outcome, whether it’s a

Banana, an Orange or Other Fruit

The one with the highest probability (score) being the winner

class!

Naïve Bayes classifier

p(Banana|Long, Sweet,

Yellow)=p(Long|Banana=0.8)*p(Sweet|Banana=0.7)*p(Yell

ow|Banana=0.9)*p(Banana=0.5)=0.252

p(Orange|Long, Sweet,

Yellow)=p(Long|Orange=0)*p(Sweet|Orange=0.5)*p(Yello

w|Orange=1)*p(Orange=0.3)=0

p(Other|Long, Sweet,

Yellow)=p(Long|Other=0.5)*p(Sweet|Other=0.75)*p(Yellow

|Other=0.25)*p(Other=0.2)=0.01875

In this case, based on the highest score, we can classify this

Long, Sweet and Yellow fruit as a Banana

Naïve Bayes classifier

Note a possible problem here: given that naïve Bayes uses

the product of variable probabilities conditioned on each

class, we run into a serious problem when new data

includes a variable value that never occurs for one or

more levels of a response class (as it happens with the

feature “long” for the Orange)

What results is 𝑝 𝐿𝑜𝑛𝑔|𝑂𝑟𝑎𝑛𝑔𝑒 =0 for this individual variable

and this zero will ripple through the entire multiplication of

all variable and will always force the posterior probability to

be zero for that class

This is clear a HUGE PROBLEM when dealing with a sparse

DfM (as it is usually the case)!

Naïve Bayes classifier

A solution to this problem involves using the Laplace

smoother

The Laplace smoother adds a small number to each of the

counts in the frequencies for each feature, which ensures

that each feature has a nonzero probability of occurring for

each class

Typically, a value of 1 for the Laplace smoother is employed,

but this is a tuning parameter to incorporate and optimize

with cross validation (more on this later on!)

Naïve Bayes classifier
Why Naïve?

Cause it assumes that every feature being classified is

independent of the value of any other variable given the

response variable

In the previous example each of the three variables (Long,

Sweet, Yellow) are considered to contribute independently

to the probability that the fruit is a Banana, regardless of

any correlations between features

By making this assumption we can simplify our calculation

such that the posterior probability is simply the product of

the probability distribution for each individual variable

conditioned on the response category

Naïve Bayes classifier
Why Naïve?

Variables, however, aren’t always independent!

However, although the model is clearly wrong – quite often

features are not conditionally independent - it has proven

to be a useful classifier for a diverse set of tasks

The same is true for text analysis: assuming that features

(i.e., words) are generated indipendently is wrong given

that the use of words is highly correlated in any data set.

However, Naïve Bayes classifier can still be useful

(remember the First Principle of text-analysis!)

Naïve Bayes classifier
Naïve Bayes classifier algorithm has a simple, but powerful

(and fast!), approach to learning the relationship between

words and categories

Moreover, it has been shown to perform surprisingly well with

very small amounts of training data that most other

classifiers, would find significantly insufficient

As a result, if you find yourself with a small amount of training

data Naïve Bayes would be a good bet!

Likewise, Naïve Bayes’ simplicity prevents it from fitting its

training data too closely and therefore does not tend

toward overfitting especially on smaller datasets like other

approaches do

Naïve Bayes classifier
However, Naïve Bayes classifier also behaves differently on

the other end of the spectrum, when provided with large

amounts of training data

As it is fed increasing quantities of training data, the

performance of the Naïve Bayes classifier plateaus above

a certain threshold

Its simplicity prevents it from benefiting incrementally from

training data past a certain point

Support Vector Machine (SVM)

SVM is a generalization of Nearest Neighbor (NN)

algorithm

NN is a rather simple algorithm. You are given a training

data consisting of m training documents

𝒙1, 𝑦1 , 𝒙2, 𝑦2 , … 𝒙𝑚, 𝑦𝑚 , where x is a vector of

possible variables and 𝑦𝑖 is the class label (the

category) of 𝑖𝑡ℎ

Support Vector Machine (SVM)
For example, in the figure below, we have two variables

Xs: each document can be either label 1 (blue points),

or label −1 (red points)

Support Vector Machine (SVM)

Now you are given a test point (the black x below), and

you have to predict its class, whether it belongs to red

class or blue class

Support Vector Machine (SVM)

The NN algorithm finds the nearest training point to this

test point (by measuring the distance of test point

from every training point), and the class predicted of

test point is the same as of nearest training point

The lower the distance, the higher the similarity between

two points

Support Vector Machine (SVM)

For example, the circled point is closest to test point, and

hence class of test point is blue

Support Vector Machine (SVM)

Two observations about NN algorithm:

✓ We don’t do any computation alone with training points.

Only when a test point comes, we compute similarity

from every training point. This is a big disadvantage of

NN algorithm

• Consider having millions of training points, and for

every test point, we have to calculate millions of

similarities from test point. We calculate similarities

from the training points which are very far from test

points, which are not really required

✓ We don’t give any importance to other training points

except the nearest one

Support Vector Machine (SVM)

SVM remove each of these two problems

Instead of finding similarity from every training point of any

test point, we calculate similarity from only a subset of

training points (or documents, when dealing with text

classification), which we compute in the training phase

These selected training points are called support

vectors, since only these points will support our

decision of selecting the class of a test point

Our hope is that our training phase finds as few as support

vectors so that we have to compute fewer number of

similarities

Support Vector Machine (SVM)

Moreover, once we have selected support vectors, we

assign a weight to each support vector, which basically

tells how much importance we want to give to that

support vector while making our decision

So unlike NN, we don’t give importance to only a single

training point (i.e., document, given that we are dealing

with text classification), instead we give each support

vector a separate importance

Support Vector Machine (SVM)

But how to find a support vector?

Intuition: first, we need to find the best line that separates

observations of different classes!

Support Vector Machine (SVM)

This is harder to visualize in more than two dimensions. In

this case you need an hyperplane

More formally, an hyperplane is n-1 dimensional subspace

of an n-dimensional space (a line in 2D, a plane in 3D

and an hyperplane in higher dimensions)

But not only that…

Support Vector Machine (SVM)
We want to find an hyperplane that best separates two

classes of points with the maximum margin (i.e., we

try to find that separating hyperplane from which

distance of closest training points is maximum) thus

producing the “cleanest" possible sorting of

observations

That is, our goal is to identify the hyperplane that

maximizes the total distance between the line and the

closest point in each class

Essentially, it is a constrained optimization problem

where the margin is maximized subject to the

constraint that it perfectly classifies the data

Intuitively, the "maximum-margin" line allows for noise and

is most tolerant to mistakes on either side. So that a

good thing to look for!

Support Vector Machine (SVM)

In the previous example, there are an infinite number of

lines that will accomplish this task, but only one

"maximum-margin" line

Support Vector Machine (SVM)

Another example: suppose that we want to split the below

red circles from the green ones by drawing a line

Support Vector Machine (SVM)

Support Vector Machine (SVM)
The data points that kind of "support" this hyperplane on

either sides (i.e., the closest training points to the line)

are called the support vectors

Support Vectors are simply the co-ordinates of individual

observations (i.e., in text analysis: documents)

In the figure, there are only 3 support vectors, so at the

test time, we will compute similarity test point on only

these 3 support vectors

Support Vector Machine (SVM)

So far, we have assumed that a hyperplane can perfectly

separate instances across classes

When this is not the case, we must relax the constraint

imposed on the distances between points and the

hyperplane, and allow for a certain amount of slack

This slack will allow for instances to be within the margin,

or even to cross the (quasi)separating hyperplane

Support Vector Machine (SVM)
In this respect we can define a loss function that ignores

those errors which are situated within the certain

distance of the true value

This type of function is often called – epsilon (ε) intensive-

loss function. The figure shows an example of an

hyperplane with epsilon intensive-loss band

Support Vector Machine (SVM)

The width of the intensive-loss zone can of course be

different!

Support Vector Machine (SVM)

This function allows us to identify the cost of the errors on

the training points

These are zero for all points that are inside the band (i.e.,

that are within ε distance of the observed value), and

larger than 0 for all points outside of it

This penalty for the errors is known as C (i.e., cost) and it

quantifies the penalty associated with having an

observation on the wrong side

Support Vector Machine (SVM)

With no perfect separation, the goal is therefore to minimize

our sum of classification errors, conditioning on the

tuning parameter C (i.e., cost) that indicates tolerance

to errors

In particular, parameter C determines the trade-off

between the model complexity and the degree to which

deviations larger than epsilon are tolerated in

optimization formulation

Support Vector Machine (SVM)

Larger values of C (ex. C = 1000 , a value which

penalizes a lot the model for misclassified

observations) thus result in greater focus of attention on

the points located very close to the decision boundary

(for a given ε), i.e., only those instances near the

class boundary play a big role its definition, while

those that remain far away from the boundary have

little effect on its location and direction

…while smaller values of C (ex. C = 0.01, a value which

doesn’t penalize the model much for misclassified

observations) involve an attention also on data points

farther away (for a given ε). It is these points that now

can also become support vectors

Support Vector Machine (SVM)

An example with three different values for C (and epsilon

fixed to 0.1)

-1
1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1

0

1

2

x

x

x

x x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

SVM classification plot

x.2

x
.1

-1
1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1

0

1

2

o

o o

o

o

o

o

o

o

o

o

o

x

x

x

x

x

x

x

x

SVM classification plot

x.2

x
.1

-1
1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1

0

1

2

o

o o

o

o

o

o

o

o

o

o

o

o

x

x

x

x

x

x

x

SVM classification plot

x.2

x
.1

C=10; SV

points=7

C=1; SV

points=8

C=0.01; SV

points=ALL!

(although of course

with a different

weight!)

Support Vector Machine (SVM)

But what if we don't want (or cannot) fit a straight line to

find support vectors (for example in 2 dimensions)?

For instance, in the figure below, although the two classes

are easily recognized as occupying different regions of

feature space, no hyperplane across it would result in a

good separation, The optimal decision boundary, which

in this case corresponds to a circle, is not linear

Support Vector Machine (SVM)

So what to do? Move to non-linearity!

We achieve this not by drawing curves, but by "lifting" the

features we observe into higher dimensions…

….i.e., instead of operating on the space defined by the

original set of predictors (where no linear boundary can

correctly separate classes of the target outcome), we

can operate on a transformed space of higher

dimensions in which linear separability becomes (again)

possible

Support Vector Machine (SVM)

For example, if we can't draw a line in the space (x1, x2)

then we may try adding a third dimension, (x1, x2, x1 *

x2)

This is known as a kernel trick, that can be linear, radial,

polynomial, etc.

Support Vector Machine (SVM)

Going back to the previous figure, suppose we add a third

feature equal to the negative sum of squares of the

original predictors

This results in the 3D scatterplot depicted on the figure

below

Support Vector Machine (SVM)

In this new, three-dimensional feature space, observations

are now arrayed on a conical surface, with instances of

class B (i.e., the triangles) rising to its apex

It is now easy to define a plane, depicted in gray, that cuts

the top of this cone and separates instances of the two

classes

The projection of this separating plane back onto the

original two-dimensional space generates the circular

decision boundary we needed

Once again, the SVM's goal is to learn this separating

hyperplane

Support Vector Machine (SVM)

You can employ different Kernel transformations:

The linear one works fine with texts

Support Vector Machine (SVM)
SVMs have been most successfully used to solve

classification problems, particularly when the number of

predictive features is much larger than the number of

observations n (as it happens with texts!!!)

For medium-sized datasets, Support Vector Machines

(SVMs) provides, quite often, an excellent choice

Random Forest classifier

To understand random forest, let’s start with what we mean

by a Decision tree model

A decision tree is a set of rules used to classify data into

categories. In particular it is the set of rules which best

partitions the data

The tree is created by splitting data up by variables and then

counting to see how many are in each bucket after each

split

Random Forest classifier

For a single-tree model, the goal is to partition the space of

predictor features (i.e. the set of all unique combinations of

predictor values) into B non-overlapping and exhaustive

regions, R1, R2, . . . , RB, that are relatively

homogeneous with respect to the outcome y, thus

improving overall predictive accuracy by sorting

observations into their respective bins

Random Forest classifier
An example: Given only the gender and weight of a

person, can we predict whether they are Japanese or

American (our 2 classes/categories)?

Our training set:

Weight (lbs.)/Sex/Nationality

195 M American

190 M American

160 F American

165 F American

165 M Japanese

160 M Japanese

130 F Japanese

140 F Japanese

Random Forest classifier

Key idea: the procedure to create decision trees is recursive. For

a set (S) of observations, the following algorithm is applied:

1. If every observation in S is the same class or if S is very small,

the tree becomes an endpoint, labeled with the most frequent

class

2. If S is too large and it contains more than one class, find the

best rule based on one feature to split it into subsets, one for

each class (different rules can be used in this respect. The aim

is always the same: the "best" branching rule is the one that

results in the most information gain)

If you had to go to step 2, apply step 1 to each new subset. If your

subsets need to go to step 2, apply step 1 to the sub-subsets,

etc. When everything is split up appropriately (into buckets that

are very small or entirely one class), you have a set of rules that

look like a tree!

Random Forest classifier
The decision tree:

Random Forest classifier
Wanna replicate it? Two lines of command!

library(rpart)

library(rattle)

nation <- read.csv("Nationality.csv", stringsAsFactors=FALSE)

fit <- rpart(Nationality ~ Sex + Weight, method="class", data=nation,

minsplit=2, minbucket=1)

fancyRpartPlot(fit, palettes = c("Greens", "Blues"), sub = "")

Random Forest classifier
In this example the tree can perfectly explain the data

This is a serious limitations! In the real world, there is

overlap: there are fat (not many, still…) Japanese people

and skinny (not many, still…) Americans

In other words, growing a single, deep tree using binary

recursive splitting can result in a grossly overt model. In

turn, this high level of in-sample predictive accuracy

usually comes at the expense of high estimator variance,

as single trees grown recursively can often times yield

wildly different predictions as a result of small changes in

the training set…overfitting!!!

So, what to do?

Random Forest classifier
Trees are usually "pruned" to avoid overfitting. The pruning

algorithm removes final nodes so that the model is a little

more general and will tend to generalize better to new,

unseen data

“Pruning” however is not always an advisable solution to the

problem of overfitting!

First, the algorithmic approach to building a tree leaves us

with no means for assessing uncertainty in our estimates

Second, the sequential nature of the recursive splitting

algorithm means that the structure of the tree is often

highly sensitive to small changes in the observations

included

Random Forest classifier
So what to do to avoid overfitting, prevent results highly

sensitive to small changes in the observations included in

the training set, and produce uncertainty in our estimates

(part 2)?

Random Forest classifier
Bootstrap aggregating (bagging)!

Bagging combines and averages multiple models. Averaging

across multiple trees reduces the variability of any one tree

and reduces overfitting, which improves predictive

performance. Bagging follows three simple steps:

1. Create m bootstrap samples from the training data.

Bootstrapped samples allow us to create many slightly

different data sets but with the same distribution as the

overall training set. The bootstrap samples must not

necessary have the same size of the original training-set

2. For each bootstrap sample train a single, unpruned

classification tree

3. Average individual predictions from each tree to create an

overall average predicted value

Random Forest classifier

One benefit of bagging is

that, on average, a bootstrap

sample will contain 63% of

the training data (a

parameter you can change!).

This leaves about 37% of the

data out of the bootstrapped

sample. This is the out-of-

bag (OOB) sample

As we will see, we can use

the OOB observations to

estimate the model’s

accuracy, creating a natural

cross-validation (?!?)

process: more on this later

on!

Random Forest classifier

Still, bagging for itself cannot be enough…

Bagging trees introduces a random component in to the tree

building process that reduces the variance of a single

tree’s prediction and improves predictive performance

However, the trees in bagging are not completely

independent of each other since all the original

predictors are considered at every split of every tree

Therefore, trees from different bootstrap samples typically

have similar structure to each other (especially at the top

of the tree) due to underlying relationships

And so? How to reduce the correlation among trees?

Random Forest classifier

The Random Forest (RF) idea!

Let’s inject more randomness into the tree-growing process.

RF achieve this in two ways:

Bootstrap: similar to bagging, each tree is grown to a

bootstrap resampled data set

Split-variable randomization (this is new!): each time a split

is to be performed, the search for the split variable is

limited to a random subset of m of the p variables

(features). This is a tuning parameter. When m=p, the

randomization amounts to using only step 1 and is the

same as bagging

Random Forest classifier
The basic algorithm for a random forest can be generalized

to the following:

1. Given training data set

2. Select the number of trees to build (ntrees)

3. for i = 1 to ntrees do

4. | Generate a bootstrap sample of the original data

5. | Grow a tree to the bootstrapped data

6. | for each split do

7. | | Select m variables at random from all p variables

8. | | Pick the best variable/split-point among the m

9. | | Split the node into two child nodes

10. | end

11. | Use typical tree model stopping criteria to determine when a tree is complete

(but do not prune)

12. end

Random Forest classifier

By fitting a tree (with no pruning) to each bootstrapped

sample and by restricting the choice of each splitting

variable to a random subset of predictors, we are sure that

each boostrapped tree provides a truly different

“perspective" on the prediction problem. All this, of course,

minimizes the risk of overfitting!

The final prediction is going to be a function of each

prediction in each random sample, for example it can be

the average of each prediction

Furthermore, measures of uncertainty can be readily

produced out of the bootstrapped samples!

R pakcages to install

install.packages("e1071", repos='http://cran.us.r-project.org')

install.packages("caTools", repos='http://cran.us.r-project.org')

install.packages("randomForest", repos='http://cran.us.r-
project.org')

install.packages('caret', repos='http://cran.us.r-project.org',
dependencies = TRUE)

install.packages("naivebayes", repos='http://cran.us.r-
project.org', dependencies = TRUE)

install.packages("car", repos='http://cran.us.r-project.org’)

