
Big Data Analytics

Lecture 7

Supervised classification methods:

A review of (some) Machine Learning

Algorithms (first part)

Define the corpus Preprocessing
Statistical

summaries

First Step

Second

Step

Goal

Scaling/scoring

Supervised

Unsupervised

Uknown categories

(unsupervised)

Classification

Partially known

categories

(semi-supervised)

Known categories

(supervised)

Automatic tagging

Human tagging

References

✓ Olivella, Santiago, and Shoub Kelsey (2020). Machine

Learning in Political Science: Supervised Learning

Models. In Luigi Curini and Robert Franzese (eds.), SAGE

Handbook of Research Methods is Political Science &

International Relations, London, Sage, chapter 56

3

ML alghoritms

Several different possible machine learning algorithms are

available out there

We will offer an intuitive introduction to some of them (pretty

standard in text analytics)

Unfortunately we will have no time to discuss about many

other of them

However, the general logic they employ remains always the

same…

We will begin with Naïve Bayes classifiers

Naïve Bayes classifier

Naïve Bayes classifier: the algorithm allows us to

predict a class, given a set of features using (Bayes)

probability theorem

But what do we mean by Bayes probability theorem?

Bayesian probability incorporates the concept

of conditional probability, the probability of

event A given that event B has occurred, i.e., p(A|B)

If we have just two classes, we can write:

p 𝐴|𝐵 =
𝑝 𝐴 ∗𝑝 𝐵|𝐴

𝑝 𝐴 ∗𝑝 𝐵|𝐴 +𝑝 ¬𝐴 ∗𝑝 𝐵|¬𝐴

where:

𝑝 𝐴|𝐵 =posterior probability

𝑝 𝐵|𝐴 = conditional probability or likelihood

𝑝 𝐴 =prior probability of the outcome

Naïve Bayes classifier

An example (with no texts involved!):

You are on the train and you want to understand if the person

sitting next to you is a centre-right voter

You know a priori (your priors!) that 54% of the Italian citizens are

centre-right voters (46% centre-left)

Now the person sitting next to you open a newspaper. You know

that the 35% of centre-right voters read that newspaper (while

it is read by 65% of centre-left voters) – your likelihood!

Which is your update belief that the person sitting next to you is a

centre-right voter?

p(CR|N) = p(CR) p(N|CR)/[(p(CR) p(N|CR)+p(CL) p(N|CL))] =

=.54*.35/(.54*.35+.46*.65) = .387

6

Naïve Bayes classifier

Within a text-analytics framework, the goal (as already

discussed!) is to infer the probability that document i

belongs to category k given word profile Wi (i.e., the

probability of a text belonging to category k given that

its predictors – features – values are x1,x2,…,xp

This can be written as p(Ck|x1, x2,…,xp))

Naïve Bayes classifier
More formally, the Bayesian formula for calculating this

probability is:

p 𝐶𝑘|𝑾𝑖 =
𝑝 𝐶𝑘 ∗𝑝 𝑾𝑖|𝐶𝑘

𝑝 𝑾𝑖

In plain English:

𝑝 𝐶𝑘|𝑾𝑖 =posterior probability: by combining our observed

information, we are updating our a priori information on

probabilities to compute a posterior probability that an

observation has class 𝐶𝑘

𝑝 𝑾𝑖|𝐶𝑘 = conditional probability or likelihood

𝑝 𝐶𝑘 =prior probability of the outcome (i.e., the average

probabily of that outcome in the training-set)

𝑝 𝑾𝑖 =evidence (the word profile we observe)

Naïve Bayes classifier
In other words, the Bayesian formula is simply:

Posterior =
𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

From above, we can drop 𝑝 𝑾𝑖 - i.e., the evidence -

from the denominator since it is a constant across

the different categories for each document

Naïve Bayes classifier

An example: let’s say we have a training-set on 1000 pieces

of fruit. The fruit being a Banana, Orange or some Other

fruit. We know 3 variables of each fruit, whether it’s long

or not, sweet or not and yellow or not:

Naïve Bayes classifier

From the table we know that, in our training-set: 50% of the fruits

are bananas; 30% are oranges; 20% are other fruits (our priors!)

Based on our table, we can also say the following:

Out of 500 bananas 400 (0.8) are Long, 350 (0.7) are Sweet and

450 (0.9) are Yellow; Out of 300 oranges 0 are Long (0.0), 150

(0.5) are Sweet and 300 (1.0) are Yellow; From the remaining

200 fruits, 100 (0.5) are Long, 150 (0.75) are Sweet and 50

(0.25) are Yellow. All these values refer to conditional

probabilities or likelihood!

Naïve Bayes classifier

Now let’s say we’re given the variables of a piece of fruit and

we need to predict the class (out-of-sample prediction!)

If we’re told that the additional fruit is Long, Sweet and

Yellow, we can classify it using the Bayes formula and

subbing in the values for each outcome, whether it’s a

Banana, an Orange or Other Fruit

The one with the highest probability (score) being the winner

class!

Naïve Bayes classifier

p(Banana|Long, Sweet,

Yellow)=p(Banana=0.5)*p(Long|Banana=0.8)*p(Sweet|Ban

ana=0.7)*p(Yellow|Banana=0.9)=0.252

p(Orange|Long, Sweet,

Yellow)=p(Orange=0.3)*p(Long|Orange=0)*p(Sweet|Orang

e=0.5)*p(Yellow|Orange=1)=0

p(Other|Long, Sweet,

Yellow)=p(Other=0.2)*p(Long|Other=0.5)*p(Sweet|Other=0

.75)*p(Yellow|Other=0.25)=0.01875

In this case, based on the highest score, we can classify this

Long, Sweet and Yellow fruit as a Banana

Naïve Bayes classifier

In the case of text-classification, instead of Banana, Orange

and Other you will have some specific categories (say,

Positive, Negative and Neutral if we are applying a

sentiment analysis) and instead of Long, Sweet and Yellow

we will have the features (aka: words) included in our DfM

The logic however followed in predicting the category of each

text included in the test-set remains exactly the same as

the one we just discussed!

Given the features included in that (unread) text, we will

estimate its posterior probability to belong to each given

category…

…then we will assign that (unread) text to the category with

the largest posterior probability among the one we

estimated!

Naïve Bayes classifier

Note a possible problem of the logic just explained: given that

naïve Bayes uses the product of variable probabilities

conditioned on each class, we run into a serious problem

when new data includes a variable value that never

occurs for one or more levels of a response class

This is what happens with 𝑝 𝐿𝑜𝑛𝑔|𝑂𝑟𝑎𝑛𝑔𝑒 =0 . This “0” will

ripple through the entire multiplication of all variable and

will always force the posterior probability to be zero for that

class

This is clear a HUGE PROBLEM when dealing with a sparse

DfM (as it is usually the case)!

Naïve Bayes classifier

A solution to this problem involves using the Laplace

smoother

The Laplace smoother adds a small number to each of the

counts in the frequencies for each feature, which ensures

that each feature has a nonzero probability of occurring for

each class

Typically, a value of 1 for the Laplace smoother is employed,

but this is a tuning parameter to incorporate and optimize

with cross validation (more on this later on!)

Naïve Bayes classifier
Why Naïve?

Cause it assumes that every feature being classified is

independent of the value of any other variable given the

response variable

In the previous example each of the three variables (Long,

Sweet, Yellow) are considered to contribute independently

to the probability that the fruit is a Banana, regardless of

any correlations between features

By making this assumption we can simplify our calculation

such that the posterior probability is simply the product of

the probability distribution for each individual variable

conditioned on the response category

Naïve Bayes classifier

Variables, however, aren’t always independent!

Although the model is clearly wrong – quite often features are

not conditionally independent - it has proven to be a useful

classifier for a diverse set of tasks

The same is true for text analysis: assuming that features

(i.e., words) are generated indipendently is wrong given

that the use of words is highly correlated in any data set.

However, Naïve Bayes classifier can still be useful

(remember the First Principle of text-analysis!)

Naïve Bayes classifier
Naïve Bayes classifier algorithm has a simple, but powerful

(and fast!), approach to learning the relationship

between words and categories

Moreover, it has been shown to perform surprisingly well

with very small amounts of training data that most other

classifiers, would find significantly insufficient

As a result, if you find yourself with a small amount of

training data Naïve Bayes would be a good bet!

Likewise, Naïve Bayes’ simplicity prevents it from fitting its

training data too closely and therefore does not tend

toward overfitting especially on smaller datasets like

other approaches do

Naïve Bayes classifier
However, Naïve Bayes classifier also behaves differently on

the other end of the spectrum, when provided with large

amounts of training data

As it is fed increasing quantities of training data, the

performance of the Naïve Bayes classifier plateaus above

a certain threshold

Its simplicity prevents it from benefiting incrementally from

training data past a certain point

Random Forest classifier

Random Forest classifier

To understand random forest, let’s start with what we mean

by a Decision tree model

A decision tree is basically a set of rules used to classify

data into categories. In particular it is the set of rules

which best partitions the data

Random Forest classifier

More in details…

…For a single-tree model, the goal is to partition the space of

predictor features (i.e. the set of all unique combinations of

predictor values) into B non-overlapping and exhaustive

regions, R1, R2, . . . , RB, that are relatively

homogeneous with respect to the outcome y, thus

improving overall predictive accuracy by sorting

observations into their respective bins

Random Forest classifier
An example: Given only the gender and weight of a

person, can we predict whether they are Japanese or

American (our 2 classes/categories)?

Let’s train a decision-tree algorithm by using the

following training set:

Weight (lbs.)/Sex/Nationality

195 M American

190 M American

160 F American

165 F American

165 M Japanese

160 M Japanese

130 F Japanese

140 F Japanese

Random Forest classifier

Key idea: the procedure to create decision trees is recursive. For

a set (S) of observations, the following algorithm is applied:

Step 1: If every observation in S is the same class or if S is very

small, the tree becomes an endpoint, labeled with the most

frequent class

Clearly the initial group with all our 8 observations does not satisfy

Step 1! Therefore, we need to move to Step 2

Random Forest classifier

Step 2: If S is too large and it contains more than one class

(as in our case!), find the best rule based on one feature

to split it into subsets, one for each class (different rules can

be used in this respect

✓ The aim is always the same: the "best" branching rule is

the one that results in the most information gain)

Random Forest classifier

So given our initial S, on which feature should we focus?

✓ Clearly not the gender feature! If we divide our initial S

according to gender (Male/Female) we would in fact remain

with two sub-groups that will have the same problems of

the initial S (50% of the two groups). No information gain at

all!

✓ Therefore, let’s focus on the weight feature. But weight is a

continuous feature! Therefore which rule should we apply

with respect to weight? For example we could apply the

following one: if weight is larger or lower than 150

Random Forest classifier
The decision tree: first feature selection rule

What’s the result of this first rule?

Random Forest classifier

If you had to go to step 2, apply step 1 to each new subset

If your subsets need to go to step 2, apply step 1 to the sub-

subsets, etc.

When everything is split up appropriately (into buckets that

are very small or entirely one class), you have a set of

rules that look like a tree!

Step 1

satisfied!

Step 1 not

satisfied!

Random Forest classifier
The decision tree: second feature selection rule

Random Forest classifier
The decision tree: second feature selection rule

Step 1 not

satisfied!Step 1

satisfied!

Random Forest classifier
The decision tree: third feature selection rule

Random Forest classifier
The final decision tree: all subgroups satisfy Step 1!

Random Forest classifier
Wanna replicate it? Two lines of command!

library(rpart)

library(rattle)

nation <- read.csv("Nationality.csv", stringsAsFactors=FALSE)

fit <- rpart(Nationality ~ Sex + Weight, method="class", data=nation,

minsplit=2, minbucket=1)

fancyRpartPlot(fit, palettes = c("Greens", "Blues"), sub = "")

https://www.dropbox.com/s/4n6z3zyantq6msc/Nationality.csv?dl=0

Random Forest classifier
We can now use the decision tree (and its rules) just

obtained to estimate the nationality of any individual not

original included in our training-set

For example, if I am telling you that we have a female that

weights more than 178 pounds…

…by applying the decision tree just fitted, we would predict

that individual as being an American one!

Random Forest classifier
In this example the tree can perfectly explain the data

This is a serious limitations! In the real world, there is

overlap: there are fat (not many, still…) Japanese people

and skinny (not many, still…) Americans

In other words, growing a single, deep tree using binary

recursive splitting can result in a grossly overt model. In

turn, this high level of in-sample predictive accuracy

usually comes at the expense of high estimator variance,

as single trees grown recursively can often times yield

wildly different predictions as a result of small changes in

the training set…overfitting!!!

So, what to do?

Random Forest classifier
Trees are usually "pruned" to avoid overfitting. The pruning

algorithm removes final nodes so that the model is a little

more general and will tend to generalize better to new,

unseen data

“Pruning” however is not always an advisable solution to the

problem of overfitting!

The sequential nature of the recursive splitting algorithm

means in fact that the structure of the tree is often highly

sensitive to small changes in the observations included in

the training-set

So what to do to avoid overfitting (part 2)?

Random Forest classifier
Bootstrap aggregating (bagging)!

We already discuss about bootstrapping! Do you remember?

In essence bootstrapping repeatedly draws independent

samples from our data set to create bootstrap data sets.

This sample is usually performed with replacement, which

means that the same observation can be sampled more

than once

Crucially given the problem discussed with respect to

decision-trees, this computation is robust to (i.e., less

affected from) sample specific characteristics

Random Forest classifier
Bootstrap aggregating (bagging)!

Now back to Bagging!

Bagging follows three simple steps:

1. Create m bootstrap samples from the training data.

Bootstrapped samples allow us to create many slightly

different data sets but with the same distribution as the

overall training set. Note: the bootstrap samples must not

(and usually do not!) necessary have the same size of the

original training-set. Why? Give me a minute!

2. For each bootstrap sample train a single, unpruned

classification tree

3. Average individual predictions from each tree to create an

overall average predicted value

Random Forest classifier

Bootstrap aggregating (bagging)!

Bagging combines and averages therefore multiple

models

➢ Averaging across multiple trees reduces the variability

of any one tree and reduces overfitting, which improves

predictive performance

Random Forest classifier
O

u
r

tr
a
in

in
g
-s

e
t

Random Forest classifier

As written earlier, the bootstrap samples have not usually

the same size of the original training-set

On average, a bootstrap sample will contain as a default

63% of the training data (a parameter you can

change!)

This leaves therefore about 37% of the data out of the

bootstrapped sample. This is the out-of-bag (OOB)

sample. What’s the advantage of that?

Random Forest classifier

Imagine that we have 500 documents in the training-set, and

imagine that our bootstrapped sample is based on 400

documents

We can then train the ML algorithm on such 400 documents,

and then using such model to classify the remaining 100

documents (not used to train the ML algorithm) in the OOB

sample

Then we can contrast the prediction of our model with the

“true” value of the OOB sample (that we know about, given

that such sample is included in the training-set after all!) to

evaluate the accuracy of our prediction!

We can use the OOB observations to produce therefore a

natural cross-validation (?!?) process: more on this later on!

Random Forest classifier

Still, bagging for itself cannot be enough…

Bagging trees introduces a random component in to the tree

building process that reduces the variance of a single

tree’s prediction and improves predictive performance

However, the trees in bagging are not completely

independent of each other since all the original

predictors are considered at every split of every tree

Therefore, trees from different bootstrap samples typically

have similar structure to each other (especially at the top

of the tree) due to underlying relationships

And so? How to reduce the correlation among trees?

Random Forest classifier

The Random Forest (RF) idea!

Let’s inject more randomness into the tree-growing process.

RF achieve this in two ways:

Bootstrap: similar to bagging, each tree is grown to a

bootstrap resampled data set

Split-variable randomization (this is new!): each time a split

is to be performed, the search for the split variable is

limited to a random subset of m of the p variables

(features). This is a tuning parameter. When m=p, the

randomization amounts to using only step 1 and is the

same as bagging

Random Forest classifier
The basic algorithm for a random forest can be therefore

generalized to the following:

1. Given training data set

2. Select the number of trees to build (ntrees)

3. for i = 1 to ntrees do

4. | Generate a bootstrap sample of the original data

5. | Grow a tree to the bootstrapped data

6. | for each split do

7. | | Select m variables at random from all p variables

8. | | Pick the best variable/split-point among the m

9. | | Split the node into two child nodes

10. | end

11. | Use typical tree model stopping criteria to determine when a tree is complete

(but do not prune)

12. end

Random Forest classifier

By fitting a tree (with no pruning) to each bootstrapped

sample and by restricting the choice of each splitting

variable to a random subset of predictors, we are sure that

each boostrapped tree provides a truly different

“perspective" on the prediction problem. All this, of course,

minimizes the risk of overfitting!

The final prediction is going to be a function of each

prediction in each random sample, for example it can be

the average of each prediction

Into the Black Box

Often, ML models are considered “black boxes” due to

their complex inner-workings

After all, it is precisely due to their complexity that they

are typically more accurate for predicting nonlinear

or rare phenomena

Into the Black Box

Indeed, a ML algorithm would allow you to discover quite

easily non-linear relationships difficult to detect ex-ante…

For example, in a recent paper (Jordan et al. 2022), it has

been suggested the following procedure:

1. Estimate a parametric model that tests theoretically

grounded hypotheses

2. Use a machine learning approach on the same set of

theoretical predictors to evaluate the robustness of the

initial parametric tests

3. Adjust the initial parametric model to account for any

nuances revealed in the machine learning approach

Into the Black Box

Unfortunately, more accuracy often comes at the expense of

interpretability, and interpretability is crucial

It is not enough to identify a ML model that optimizes

predictive performance (via for example cross-validation:

more on this later on)

Understanding and trusting model results is a hallmark of

good (social and political) science!

Luckily, several advancements have been made to aid in

interpreting ML models over the years.

Interpreting ML models is an emerging field that has become

known as "Interpretable Machine Learning" (IML)

Into the Black Box

Approaches to model interpretability can be broadly

categorized as providing global or local explanations

Global interpretations help us understand the inputs and their

entire modeled relationship with the prediction target

Global interpretability in particular is about understanding

how the model makes predictions, based on a holistic view

of its features and how they influence the underlying model

structure

It answers questions regarding which features are relatively

influential as well as how these features influence the

response variable (i.e., in a positive or negative way?)

Into the Black Box

Global interpretations is therefore crucial to assess the

content validity (does the measure capture the

theoretical concept?) of a ML algorithm

This is highly relevant when one is not only interested in

high predictive power but also in accurately

measuring latent concepts of interest

For example, the most influential features found by our

ML algorithm in affecting a given class-labels should

make sense from a theoretical point of view rather

than being based on “accidental, meaningless

regularities and confounding patterns”

Into the Black Box

“In their effort to match human annotations or given ground

truths, algorithmic classifiers show little interest in

separating valid variation in the material from accidental,

meaningless regularities and confounding patterns. Relying

on salient, correlated patterns identified in the data, these

tools may still frequently guess correctly, while potentially

introducing systematic biases into the analysis”

Baden, C., C. Pipal, M. Schoonvelde, and M. A. C. G. van der

Velden. 2021. “Three Gaps in Computational Text Analysis

Methods for Social Sciences: A Research Agenda.”

Communication Methods and Measures (December 27,

2021): 1–18. ISSN: 1931-2458, 1931-2466

Into the Black Box

For an interesting paper discussing how the results of a

seemingly “good ML algorithm” in terms of accuracy,

could present in reality a poor “content validity”:

Michael Jankowski and Robert A. Huber (2022). When

Correlation Is Not Enough: Validating Populism

Scores from Supervised Machine-Learning Models,

Political Analysis, DOI: 10.1017/pan.xxxx.xx

Into the Black Box

Local interpretations help us on the other hand to understand

model predictions for a single row of data or a group of

similar rows (i.e., the marginal impact of a feature across

its values on our DV, holding all the other features at their

actual value for each observation i)

In text analytics (given that we are dealing with huge DfM

wherein the features per-se are not the main focus of our

interest) we are mainly interested in global interpretations

However if you use ML for other aims, local interpretations

become VERY important!

For an interesting paper illustrating the power of local interpretations:

Soren Jordan, Hannah L. Paul, Andrew Q. Philips, How to Cautiously

Uncover the “Black Box” of Machine Learning Models for Legislative

Scholars, Legislative Studies Quarterly, 2022,

https://onlinelibrary.wiley.com/doi/abs/10.1111/lsq.12378

R pakcages to install

install.packages("e1071", repos='http://cran.us.r-project.org')

install.packages("randomForest", repos='http://cran.us.r-project.org')

install.packages('caret', repos='http://cran.us.r-project.org',
dependencies = TRUE)

install.packages("naivebayes", repos='http://cran.us.r-project.org',
dependencies = TRUE)

install.packages("car", repos='http://cran.us.r-project.org’)

install.packages("iml", repos='http://cran.us.r-project.org’)

install.packages("future", repos='http://cran.us.r-project.org’)

install.packages("future.callr", repos='http://cran.us.r-project.org’)

install.packages("gridExtra", repos='http://cran.us.r-project.org’)

Into the Black Box
“... operationalization [of a concept] is replaced by powerful algorithms

trained to identify any patterns and indicators that correlate with

provided annotations, effectively supplanting validity with predictive

performance [...] In their effort to match human annotations or given

ground truths, algorithmic classifiers show little interest in separating

valid variation in the material from accidental, meaningless

regularities and confounding patterns. Relying on salient, correlated

patterns identified in the data, these tools may still frequently guess

correctly, while potentially introducing systematic biases into the

analysis”

Baden, C., C. Pipal, M. Schoonvelde, and M. A. C. G. van der Velden.

2021. “Three Gaps in Computational Text Analysis Methods for Social

Sciences: A Research Agenda.” Communication Methods and

Measures (December 27, 2021): 1–18. ISSN: 1931-2458, 1931-2466,

accessed January 9, 2022.

https://doi.org/10.1080/19312458.2021.2015574.

https://www.tandfonline.com/doi/full/10.1080/19312458.2021.201557

4

