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ML alghoritms

Several different possible machine learning algorithms are 

available out there

We will offer an intuitive introduction to some of them (pretty 

standard in text analytics)

Unfortunately we will have no time to discuss about many

other of them

However, the general logic they employ remains always the 

same…

We will begin with Naïve Bayes classifiers



Naïve Bayes classifier

Naïve Bayes classifier: the algorithm allows us to 

predict a class, given a set of features using (Bayes) 

probability theorem

But what do we mean by Bayes probability theorem?

Bayesian probability incorporates the concept 

of conditional probability, the probability of 

event A given that event B has occurred, i.e., p(A|B)

If we have just two classes, we can write:

p 𝐴|𝐵 =
𝑝 𝐴 ∗𝑝 𝐵|𝐴

𝑝 𝐴 ∗𝑝 𝐵|𝐴 +𝑝 ¬𝐴 ∗𝑝 𝐵|¬𝐴

where: 

𝑝 𝐴|𝐵 =posterior probability

𝑝 𝐵|𝐴 = conditional probability or likelihood

𝑝 𝐴 =prior probability of the outcome



Naïve Bayes classifier

An example (with no texts involved!):

You are on the train and you want to understand if the person 

sitting next to you is a centre-right voter

You know a priori (your priors!) that 54% of the Italian citizens are 

centre-right voters (46% centre-left)

Now the person sitting next to you open a newspaper. You know 

that the 35% of centre-right voters read that newspaper (while 

it is read by 65% of centre-left voters) – your likelihood!

Which is your update belief that the person sitting next to you is a 

centre-right voter?

p(CR|N) = p(CR) p(N|CR)/[(p(CR) p(N|CR)+p(CL) p(N|CL))] =

=.54*.35/(.54*.35+.46*.65) = .387
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Naïve Bayes classifier

Within a text-analytics framework, the goal (as already 

discussed!) is to infer the probability that document i

belongs to category k given word profile Wi (i.e., the 

probability of a text belonging to category k given that 

its predictors – features – values are x1,x2,…,xp

This can be written as p(Ck|x1, x2,…,xp) )



Naïve Bayes classifier
More formally, the Bayesian formula for calculating this 

probability is:

p 𝐶𝑘|𝑾𝑖 =
𝑝 𝐶𝑘 ∗𝑝 𝑾𝑖|𝐶𝑘

𝑝 𝑾𝑖

In plain English:

𝑝 𝐶𝑘|𝑾𝑖 =posterior probability: by combining our observed 

information, we are updating our a priori information on 

probabilities to compute a posterior probability that an 

observation has class 𝐶𝑘

𝑝 𝑾𝑖|𝐶𝑘 = conditional probability or likelihood

𝑝 𝐶𝑘 =prior probability of the outcome (i.e., the average 

probabily of that outcome in the training-set) 

𝑝 𝑾𝑖 =evidence (the word profile we observe)



Naïve Bayes classifier
In other words, the Bayesian formula is simply:

Posterior =
𝑝𝑟𝑖𝑜𝑟 ∗ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

From above, we can drop 𝑝 𝑾𝑖 - i.e., the evidence -

from the denominator since it is a constant across 

the different categories for each document



Naïve Bayes classifier

An example: let’s say we have a training-set on 1000 pieces 

of fruit. The fruit being a Banana, Orange or some Other 

fruit. We know 3 variables of each fruit, whether it’s long 

or not, sweet or not and yellow or not:



Naïve Bayes classifier

From the table we know that, in our training-set: 50% of the fruits 

are bananas; 30% are oranges; 20% are other fruits (our priors!)

Based on our table, we can also say the following:

Out of 500 bananas 400 (0.8) are Long, 350 (0.7) are Sweet and 

450 (0.9) are Yellow; Out of 300 oranges 0 are Long (0.0), 150 

(0.5) are Sweet and 300 (1.0) are Yellow; From the remaining 

200 fruits, 100 (0.5) are Long, 150 (0.75) are Sweet and 50 

(0.25) are Yellow. All these values refer to conditional 

probabilities or likelihood!



Naïve Bayes classifier

Now let’s say we’re given the variables of a piece of fruit and 

we need to predict the class (out-of-sample prediction!)

If we’re told that the additional fruit is Long, Sweet and 

Yellow, we can classify it using the Bayes formula and 

subbing in the values for each outcome, whether it’s a 

Banana, an Orange or Other Fruit

The one with the highest probability (score) being the winner 

class!



Naïve Bayes classifier

p(Banana|Long, Sweet, 

Yellow)=p(Banana=0.5)*p(Long|Banana=0.8)*p(Sweet|Ban

ana=0.7)*p(Yellow|Banana=0.9)=0.252

p(Orange|Long, Sweet, 

Yellow)=p(Orange=0.3)*p(Long|Orange=0)*p(Sweet|Orang

e=0.5)*p(Yellow|Orange=1)=0

p(Other|Long, Sweet, 

Yellow)=p(Other=0.2)*p(Long|Other=0.5)*p(Sweet|Other=0

.75)*p(Yellow|Other=0.25)=0.01875

In this case, based on the highest score, we can classify this 

Long, Sweet and Yellow fruit as a Banana



Naïve Bayes classifier

In the case of text-classification, instead of Banana, Orange 

and Other you will have some specific categories (say, 

Positive, Negative and Neutral if we are applying a 

sentiment analysis) and instead of Long, Sweet and Yellow 

we will have the features (aka: words) included in our DfM

The logic however followed in predicting the category of each 

text included in the test-set remains exactly the same as 

the one we just discussed!

Given the features included in that (unread) text, we will 

estimate its posterior probability to belong to each given 

category…

…then we will assign that (unread) text to the category with 

the largest posterior probability among the one we 

estimated!



Naïve Bayes classifier

Note a possible problem of the logic just explained: given that 

naïve Bayes uses the product of variable probabilities 

conditioned on each class, we run into a serious problem 

when new data includes a variable value that never 

occurs for one or more levels of a response class 

This is what happens with 𝑝 𝐿𝑜𝑛𝑔|𝑂𝑟𝑎𝑛𝑔𝑒 =0 . This “0” will 

ripple through the entire multiplication of all variable and 

will always force the posterior probability to be zero for that 

class

This is clear a HUGE PROBLEM when dealing with a sparse 

DfM (as it is usually the case)!



Naïve Bayes classifier

A solution to this problem involves using the Laplace 

smoother

The Laplace smoother adds a small number to each of the 

counts in the frequencies for each feature, which ensures 

that each feature has a nonzero probability of occurring for 

each class

Typically, a value of 1 for the Laplace smoother is employed, 

but this is a tuning parameter to incorporate and optimize 

with cross validation (more on this later on!)



Naïve Bayes classifier
Why Naïve?

Cause it assumes that every feature being classified is 

independent of the value of any other variable given the 

response variable

In the previous example each of the three variables (Long, 

Sweet, Yellow) are considered to contribute independently 

to the probability that the fruit is a Banana, regardless of 

any correlations between features 

By making this assumption we can simplify our calculation 

such that the posterior probability is simply the product of 

the probability distribution for each individual variable 

conditioned on the response category



Naïve Bayes classifier

Variables, however, aren’t always independent!

Although the model is clearly wrong – quite often features are 

not conditionally independent - it has proven to be a useful 

classifier for a diverse set of tasks 

The same is true for text analysis: assuming that features 

(i.e., words) are generated indipendently is wrong given 

that the use of words is highly correlated in any data set. 

However, Naïve Bayes classifier can still be useful 

(remember the First Principle of text-analysis!)



Naïve Bayes classifier
Naïve Bayes classifier algorithm has a simple, but powerful 

(and fast!), approach to learning the relationship 

between words and categories

Moreover, it has been shown to perform surprisingly well 

with very small amounts of training data that most other 

classifiers, would find significantly insufficient 

As a result, if you find yourself with a small amount of 

training data Naïve Bayes would be a good bet!

Likewise, Naïve Bayes’ simplicity prevents it from fitting its 

training data too closely and therefore does not tend 

toward overfitting especially on smaller datasets like 

other approaches do



Naïve Bayes classifier
However, Naïve Bayes classifier also behaves differently on 

the other end of the spectrum, when provided with large 

amounts of training data

As it is fed increasing quantities of training data, the 

performance of the Naïve Bayes classifier plateaus above 

a certain threshold

Its simplicity prevents it from benefiting incrementally from 

training data past a certain point



Random Forest classifier



Random Forest classifier

To understand random forest, let’s start with what we mean 

by a Decision tree model

A decision tree is basically a set of rules used to classify 

data into categories. In particular it is the set of rules

which best partitions the data



Random Forest classifier

More in details…

…For a single-tree model, the goal is to partition the space of 

predictor features (i.e. the set of all unique combinations of 

predictor values) into B non-overlapping and exhaustive 

regions, R1, R2, . . . , RB, that are relatively 

homogeneous with respect to the outcome y, thus 

improving overall predictive accuracy by sorting 

observations into their respective bins



Random Forest classifier
An example: Given only the gender and weight of a 

person, can we predict whether they are Japanese or 

American (our 2 classes/categories)?

Let’s train a decision-tree algorithm by using the 

following training set:

Weight (lbs.)/Sex/Nationality

195 M American

190 M American

160 F American

165 F American

165 M Japanese

160 M Japanese

130 F Japanese

140 F Japanese



Random Forest classifier

Key idea: the procedure to create decision trees is recursive. For 

a set (S) of observations, the following algorithm is applied:

Step 1: If every observation in S is the same class or if S is very 

small, the tree becomes an endpoint, labeled with the most 

frequent class

Clearly the initial group with all our 8 observations does not satisfy 

Step 1! Therefore, we need to move to Step 2



Random Forest classifier

Step 2: If S is too large and it contains more than one class 

(as in our case!), find the best rule based on one feature 

to split it into subsets, one for each class (different rules can 

be used in this respect

✓ The aim is always the same: the "best" branching rule is 

the one that results in the most information gain)



Random Forest classifier

So given our initial S, on which feature should we focus?

✓ Clearly not the gender feature! If we divide our initial S 

according to gender (Male/Female) we would in fact remain 

with two sub-groups that will have the same problems of 

the initial S (50% of the two groups). No information gain at 

all!

✓ Therefore, let’s focus on the weight feature. But weight is a 

continuous feature! Therefore which rule should we apply 

with respect to weight? For example we could apply the 

following one: if weight is larger or lower than 150



Random Forest classifier
The decision tree: first feature selection rule

What’s the result of this first rule?



Random Forest classifier

If you had to go to step 2, apply step 1 to each new subset

If your subsets need to go to step 2, apply step 1 to the sub-

subsets, etc. 

When everything is split up appropriately (into buckets that 

are very small or entirely one class), you have a set of 

rules that look like a tree!

Step 1 

satisfied!

Step 1 not

satisfied!



Random Forest classifier
The decision tree: second feature selection rule



Random Forest classifier
The decision tree: second feature selection rule

Step 1 not

satisfied!Step 1 

satisfied!



Random Forest classifier
The decision tree: third feature selection rule



Random Forest classifier
The final decision tree: all subgroups satisfy Step 1!



Random Forest classifier
Wanna replicate it? Two lines of command!

library(rpart)

library(rattle)

nation <- read.csv("Nationality.csv", stringsAsFactors=FALSE)

fit <- rpart(Nationality ~ Sex + Weight, method="class", data=nation, 

minsplit=2, minbucket=1)

fancyRpartPlot(fit, palettes = c("Greens", "Blues"), sub = "")

https://www.dropbox.com/s/4n6z3zyantq6msc/Nationality.csv?dl=0


Random Forest classifier
We can now use the decision tree (and its rules) just 

obtained to estimate the nationality of any individual not 

original included in our training-set 

For example, if I am telling you that we have a female that 

weights more than 178 pounds…

…by applying the decision tree just fitted, we would predict 

that individual as being an American one!



Random Forest classifier
In this example the tree can perfectly explain the data

This is a serious limitations! In the real world, there is 

overlap: there are fat (not many, still…) Japanese people 

and skinny (not many, still…) Americans 

In other words, growing a single, deep tree using binary 

recursive splitting can result in a grossly overt model. In 

turn, this high level of in-sample predictive accuracy 

usually comes at the expense of high estimator variance, 

as single trees grown recursively can often times yield 

wildly different predictions as a result of small changes in 

the training set…overfitting!!!

So, what to do?



Random Forest classifier
Trees are usually "pruned" to avoid overfitting. The pruning 

algorithm removes final nodes so that the model is a little 

more general and will tend to generalize better to new, 

unseen data

“Pruning” however is not always an advisable solution to the 

problem of overfitting! 

The sequential nature of the recursive splitting algorithm 

means in fact that the structure of the tree is often highly 

sensitive to small changes in the observations included in 

the training-set

So what to do to avoid overfitting (part 2)?



Random Forest classifier
Bootstrap aggregating (bagging)!

We already discuss about bootstrapping! Do you remember? 

In essence bootstrapping repeatedly draws independent 

samples from our data set to create bootstrap data sets. 

This sample is usually performed with replacement, which 

means that the same observation can be sampled more 

than once

Crucially given the problem discussed with respect to 

decision-trees, this computation is robust to (i.e., less 

affected from) sample specific characteristics



Random Forest classifier
Bootstrap aggregating (bagging)!

Now back to Bagging!

Bagging follows three simple steps:

1. Create m bootstrap samples from the training data. 

Bootstrapped samples allow us to create many slightly 

different data sets but with the same distribution as the 

overall training set. Note: the bootstrap samples must not 

(and usually do not!) necessary have the same size of the 

original training-set. Why? Give me a minute!

2. For each bootstrap sample train a single, unpruned 

classification tree

3. Average individual predictions from each tree to create an 

overall average predicted value



Random Forest classifier

Bootstrap aggregating (bagging)!

Bagging combines and averages therefore multiple 

models

➢ Averaging across multiple trees reduces the variability 

of any one tree and reduces overfitting, which improves 

predictive performance



Random Forest classifier
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Random Forest classifier

As written earlier, the bootstrap samples have not usually 

the same size of the original training-set 

On average, a bootstrap sample will contain as a default 

63% of the training data (a parameter you can 

change!)

This leaves therefore about 37% of the data out of the 

bootstrapped sample. This is the out-of-bag (OOB) 

sample. What’s the advantage of that?



Random Forest classifier

Imagine that we have 500 documents in the training-set, and 

imagine that our bootstrapped sample is based on 400 

documents

We can then train the ML algorithm on such 400 documents, 

and then using such model to classify the remaining 100 

documents (not used to train the ML algorithm) in the OOB 

sample 

Then we can contrast the prediction of our model with the 

“true” value of the OOB sample (that we know about, given 

that such sample is included in the training-set after all!) to 

evaluate the accuracy of our prediction! 

We can use the OOB observations to produce therefore a 

natural cross-validation (?!?) process: more on this later on!



Random Forest classifier

Still, bagging for itself cannot be enough…

Bagging trees introduces a random component in to the tree 

building process that reduces the variance of a single 

tree’s prediction and improves predictive performance

However, the trees in bagging are not completely 

independent of each other since all the original 

predictors are considered at every split of every tree

Therefore, trees from different bootstrap samples typically 

have similar structure to each other (especially at the top 

of the tree) due to underlying relationships

And so? How to reduce the correlation among trees?



Random Forest classifier

The Random Forest (RF) idea! 

Let’s inject more randomness into the tree-growing process. 

RF achieve this in two ways:

Bootstrap: similar to bagging, each tree is grown to a 

bootstrap resampled data set

Split-variable randomization (this is new!): each time a split 

is to be performed, the search for the split variable is 

limited to a random subset of m of the p variables 

(features). This is a tuning parameter. When m=p, the 

randomization amounts to using only step 1 and is the 

same as bagging



Random Forest classifier
The basic algorithm for a random forest can be therefore 

generalized to the following:

1.  Given training data set

2.  Select the number of trees to build (ntrees)

3.  for i = 1 to ntrees do

4.  |  Generate a bootstrap sample of the original data

5.  |  Grow a tree to the bootstrapped data

6.  |  for each split do

7.  |  | Select m variables at random from all p variables

8.  |  | Pick the best variable/split-point among the m

9.  |  | Split the node into two child nodes

10. |  end

11. | Use typical tree model stopping criteria to determine when a tree is complete 

(but do not prune)

12. end



Random Forest classifier

By fitting a tree (with no pruning) to each bootstrapped 

sample and by restricting the choice of each splitting 

variable to a random subset of predictors, we are sure that 

each boostrapped tree provides a truly different 

“perspective" on the prediction problem. All this, of course, 

minimizes the risk of overfitting!

The final prediction is going to be a function of each 

prediction in each random sample, for example it can be 

the average of each prediction



Into the Black Box

Often, ML models are considered “black boxes” due to 

their complex inner-workings

After all, it is precisely due to their complexity that they 

are typically more accurate for predicting nonlinear 

or rare phenomena



Into the Black Box

Indeed, a ML algorithm would allow you to discover quite 

easily non-linear relationships difficult to detect ex-ante…

For example, in a recent paper (Jordan et al. 2022), it has 

been suggested the following procedure:

1. Estimate a parametric model that tests theoretically 

grounded hypotheses

2. Use a machine learning approach on the same set of 

theoretical predictors to evaluate the robustness of the 

initial parametric tests

3. Adjust the initial parametric model to account for any 

nuances revealed in the machine learning approach



Into the Black Box

Unfortunately, more accuracy often comes at the expense of 

interpretability, and interpretability is crucial

It is not enough to identify a ML model that optimizes 

predictive performance (via for example cross-validation: 

more on this later on)

Understanding and trusting model results is a hallmark of 

good (social and political) science! 

Luckily, several advancements have been made to aid in 

interpreting ML models over the years.

Interpreting ML models is an emerging field that has become 

known as "Interpretable Machine Learning" (IML)



Into the Black Box

Approaches to model interpretability can be broadly 

categorized as providing global or local explanations

Global interpretations help us understand the inputs and their 

entire modeled relationship with the prediction target

Global interpretability in particular is about understanding 

how the model makes predictions, based on a holistic view 

of its features and how they influence the underlying model 

structure

It answers questions regarding which features are relatively 

influential as well as how these features influence the 

response variable (i.e., in a positive or negative way?)



Into the Black Box

Global interpretations is therefore crucial to assess the 

content validity (does the measure capture the 

theoretical concept?) of a ML algorithm

This is  highly relevant when one is not only interested in 

high predictive power but also in accurately 

measuring latent concepts of interest

For example, the most influential features found by our 

ML algorithm in affecting a given class-labels should 

make sense from a theoretical point of view rather 

than being based on “accidental, meaningless 

regularities and confounding patterns”



Into the Black Box

“In their effort to match human annotations or given ground 

truths, algorithmic classifiers show little interest in 

separating valid variation in the material from accidental, 

meaningless regularities and confounding patterns. Relying 

on salient, correlated patterns identified in the data, these 

tools may still frequently guess correctly, while potentially 

introducing systematic biases into the analysis” 

Baden, C., C. Pipal, M. Schoonvelde, and M. A. C. G. van der 

Velden. 2021. “Three Gaps in Computational Text Analysis 

Methods for Social Sciences: A Research Agenda.” 

Communication Methods and Measures (December 27, 

2021): 1–18. ISSN: 1931-2458, 1931-2466



Into the Black Box

For an interesting paper discussing how the results of a 

seemingly “good ML algorithm” in terms of accuracy, 

could present in reality a poor “content validity”:

Michael Jankowski and Robert A. Huber (2022). When 

Correlation Is Not Enough: Validating Populism 

Scores from Supervised Machine-Learning Models, 

Political Analysis, DOI: 10.1017/pan.xxxx.xx



Into the Black Box

Local interpretations help us on the other hand to understand 

model predictions for a single row of data or a group of 

similar rows (i.e., the marginal impact of a feature across 

its values on our DV, holding all the other features at their 

actual value for each observation i)

In text analytics (given that we are dealing with huge DfM

wherein the features per-se are not the main focus of our 

interest) we are mainly interested in global interpretations

However if you use ML for other aims, local interpretations 

become VERY important!

For an interesting paper illustrating the power of local interpretations: 

Soren Jordan, Hannah L. Paul, Andrew Q. Philips, How to Cautiously 

Uncover the “Black Box” of Machine Learning Models for Legislative 

Scholars, Legislative Studies Quarterly, 2022, 

https://onlinelibrary.wiley.com/doi/abs/10.1111/lsq.12378



R pakcages to install

install.packages("e1071", repos='http://cran.us.r-project.org')

install.packages("randomForest", repos='http://cran.us.r-project.org')

install.packages('caret', repos='http://cran.us.r-project.org', 
dependencies = TRUE)

install.packages("naivebayes", repos='http://cran.us.r-project.org', 
dependencies = TRUE)

install.packages("car", repos='http://cran.us.r-project.org’)

install.packages("iml", repos='http://cran.us.r-project.org’)

install.packages("future", repos='http://cran.us.r-project.org’)

install.packages("future.callr", repos='http://cran.us.r-project.org’)

install.packages("gridExtra", repos='http://cran.us.r-project.org’)



Into the Black Box
“... operationalization [of a concept] is replaced by powerful algorithms 

trained to identify any patterns and indicators that correlate with 

provided annotations, effectively supplanting validity with predictive 

performance [...] In their effort to match human annotations or given 

ground truths, algorithmic classifiers show little interest in separating 

valid variation in the material from accidental, meaningless 

regularities and confounding patterns. Relying on salient, correlated 

patterns identified in the data, these tools may still frequently guess 

correctly, while potentially introducing systematic biases into the 

analysis” 

Baden, C., C. Pipal, M. Schoonvelde, and M. A. C. G. van der Velden. 

2021. “Three Gaps in Computational Text Analysis Methods for Social 

Sciences: A Research Agenda.” Communication Methods and 

Measures (December 27, 2021): 1–18. ISSN: 1931-2458, 1931-2466, 

accessed January 9, 2022. 

https://doi.org/10.1080/19312458.2021.2015574. 

https://www.tandfonline.com/doi/full/10.1080/19312458.2021.201557
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