
Big Data Analytics

Lecture 8

Cross-Validation

Our Course Map

Reference

✓ Grimmer, Justin, and Stewart, Brandon M. (2013). Text as

Data: The Promise and Pitfalls of Automatic Content Analysis

Methods for Political Texts. Political Analysis, 21(3): 267-297

✓ Curini, Luigi, and Robert Fahey (2020). Sentiment Analysis

and Social Media. In Luigi Curini and Robert Franzese (eds.),

SAGE Handbook of Research Methods is Political Science &

International Relations, London, Sage, chapter 29

✓ Cranmer, Skyler J. and Desmarais, Bruce A. (2017) What Can

We Learn from Predictive Modeling?, Political Analysis, 25:

145-166

3

Validation

Validation

Since the ultimate goal of supervised learning is to find

generalizable patterns of association, models are typically

subject to some from of regularization - typically in the form

of a constraint that pushes the model toward parsimony -

and are selected based on their ability to generate

good out-of-samples predictions

Clearly, it is impossible to evaluate a model's performance on

the universe of unsampled test instances (i.e., the test set),

so an approximate measure of performance must be

devised

Validation

Supervised methods are designed to automate the hand

coding of documents into categories or measuring the

proportion of documents in categories as we have already

noticed

If a method is performing well, it will directly replicate the

hand coding. If it performs poorly, it will fail to replicate the

coding – instead introducing serious errors

This clear objective implies a clear standard for evaluation:

comparing the output of machine coding to the output of

hand coding. From here the idea of validation!

Validation

The ideal validation procedure would divide the data into

three subsets

1. Initial model fitting would be performed on the training-set

2. Once a final model is chosen, a second set of hand-coded

documents - the validation set - would be used to assess

the performance of the model

3. The final model would then be applied to the test to

complete the classification

Validation

This approach to validation is difficult to apply in most

settings. But cross-validation (also called: K-fold

validation) can be used to replicate this ideal procedure

Validation

In K-fold cross-validation, the training set is randomly

partitioned into some groups (say two: K1 and K2)

For each group, the first model is trained on K1, then applied

to the K2 to assess performance; similarly a model is

trained on the K2 and then applied to K1 to assess

performance

Then you take the average across the results you get in the

two scenarios

Validation

And if you want to run a K-fold cross-validation with K

larger than 2?

The algorithm is as follow:

1. Randomly split the data set into k-subsets (or k-fold) (for

example 5 subsets)

2. Reserve one subset and train the model on all other subsets

(4 in this case)

3. Test the model on the reserved subset and record the

prediction error

4. Repeat this process until each of the k subsets has served

as the test set

5. Compute the average of the k recorded errors. This is called

the cross-validation error serving as the performance

metric for the model

Validation

So, for example, with K-fold cross-validation=5…

Validation

Typical question, is how to choose right value of k?

Lower value of k is more biased and hence undesirable. On

the other hand, higher value of k is less biased, but can

suffer from large variability

In practice, one typically performs k-fold cross-validation

using k = 5 or k = 10, as these values have been shown

empirically to yield test error rate estimates that suffer

neither from excessively high bias nor from very high

variance

Validation

When you run a ML algorithm on the test-set, there are no

available statistics to control for the goodness-of-fit of your

prediction (by definition the “true” values of the test-set are

unknown!)

That is why cross-validation is so important! This is the only

way to control if the ML algorithm you are using is doing a

good job or not (unless you are ready to believe in that by

fiat)!

Moreover, cross-validation avoids overfitting by focusing on

out-of-sample prediction and selects the best model for

the underlying data from a set of candidate models

Validation

Which statistics (or performance metrics) should we use to

assess model performance?

There are several of them, but we are going to focus on three

metrics for individual classifiers with text-analysis

Validation

Accuracy: proportion of correctly classified documents

While of course we want this score to be as high as possible,

it can also be important to look at the two components

which make up that score, known as recall and precision

Validation

Recall or Sensitivity (for a category k) is a measure of what

proportion of instances of a given category the algorithm

correctly identified; so for example, if there were 10

instances of the category “positive” in the data set, and the

algorithm correctly identified 8 of them, we would say that

this algorithm has “recall of 0.8 for the category positive”

✓ given that a human coder labels a document as belonging

to category k, what is the chance the machine identifies

the document?

Validation

Precision or Positive Predictive Value (for a category k) on

the other hand is a measure of how many of the times the

algorithm identified a category were actually correct, as

against how many times were false positives. In the above

example, where the algorithm correctly identified 8 of the 10

instances of positive, perhaps the algorithm also miss-

identified 4 other documents as positive - so 8 out of its 12

positive classifications were correct, allowing us to say that it

has a “precision of 0.667 for the category positive”

✓ given that the machine guesses category k, what is the

probability that the machine made the right guess?

Validation

If you find market differences between the recall and

precision (for example, with a recall rate >> precision)

implies that your algorithm guesses too often that a

document belongs to category k

The result is that it labels a large portion of the human

coder’s as k correctly (and so you have a high recall

rate). But it also includes several documents that humans

label differently (and so you have a low precision)

This sometimes applies when the original k category,

compared to the other 𝑘𝑛−1 categories, is the most

relevant category in the training-set

Validation

The aggregate of the recall and precision scores for a

category is known as the f1 score

More precisely, the traditional F-measure or balanced F-

score (f1) is the harmonic mean of precision and recall:

f1 = (2 * precision * recall) / (precision + recall)…

…where the highest level of performance (of f1) is equal to 1

and the lowest 0

Validation

The average of the f1 scores for all the categories is a

reasonable rough measurement of the performance of the

algorithm (more than accuracy alone!)

However, before using the algorithm for any serious analysis

work, it is advisable also to take a look at the precision and

recall scores for individual categories - you may find that a

category you are planning to use in your analysis actually

has very high rate of false-positive or false-negative

identifications, which could cause serious problems for

your results

Let’s an example on how to compute the statistics we

discussed up to now from the Confusion matrix

Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionBlack=
TrueB+ FalseB

TrueB

RecallBlack =
TrueB + FalseW

TrueB

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1Black =
precisionB+ recallB

2 * precisionB* recallB

Think

horizontally

Think

vertically

Performance metrics: an
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionBlack =
800+ 100

= 0.88
800

RecallBlack =
800+ 50

= 0.94
800

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 Black =
.88+ .94

= 0.91
2*.88*.94

Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionWhite =
TrueW+ FalseW

TrueW

RecallWhite =
TrueW + FalseB

TrueW

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1White =
precisionW + recallW

2 * precisionW * recallW

Think

horizontally

Think

vertically

Performance metrics: an
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionWhite =
50+ 50

= 0.5
50

RecallWhite =
50+ 100

= 0.33
50

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 White=
.5+ .33

= 0.39
2*.5*.33

Performance metrics
In this example you are going to have a single Accuracy

value=0.85

Then you could take the average of the F1 scores for the

classes as another (and more reliable) measure of the

performance of the algorithm

In our case: (.91+.39)/2=.65

You see the difference here between Accuracy and the

averaged F1 score. This difference is due that we are

doing well with the Black class, but relative poorly with the

White class

Validation
As already underlined, in some given circumstances

Accuracy is not a reliable metric for the real performance

of a classifier

This happens with a greater likelihood when your data set is

highly unbalanced (that is, when the numbers of

observations in different classes vary greatly)

For example, if there were 95 cats and only 5 dogs in the

data, a particular classifier might classify all the

observations as cats

The overall accuracy would be then…how much?

Performance metrics: an
example

Confusion matrix:

Accuracy =
95 + 0

95+ 4 + 1 + 0
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

Accuray seems hight but compared to a natural

benchmark (i.e., assinging all the observations to the

most frequent class)?

In this case: 95% so Accuracy==to a random draw!

Validation
Moreover, in this same circumstance, the classifier would

have a recall rate (sensitivity) for the dog class equals

to…? And for the cats equals to…? [think vertically!]

Performance metrics: an
example

Confusion matrix:

Accuracy =
95+ 0

95 + 4 + 1 + 0
= 0.95

RecallDogs =
0 + 4

= 0
0

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

RecallCats= 9 5 + 1
= 0.989

95

Validation
If you have a very imbalanced datasets, besides the average

value of F1, you could also decide to focus on Balanced

Accuracy rather than Accuracy

It is defined as the macro-average of the recall obtained on

each class

In our previous example of cats & dogs:

Accuracy: 0.95

Balanced Accuracy: (0.989+0)/2=0.495

The imbalanced data-set riddle
Summing up: if you have a very imbalanced data set (i.e., a

data set that contains many more samples from one class

than from the rest of the classes) you could have a very

hard day with any ML algorithm! Why?

The imbalanced data-set riddle
In this scenario, classifiers can have good accuracy on the

majority class but very poor accuracy on the minority

class(es) due to the influence that the larger majority class

produces – i.e., the model will perform badly because the

model is not trained on a sufficient amount of data

representing the minority class(es)

This will affect negatively your out-of-sample prediction!

The imbalanced data-set riddle

The existence of a category Ck extremely frequent in a

training-set can negatively affect 𝑝 𝑪 𝑾

The imbalanced data-set riddle
And so?

Best strategy: go back to your training-set and improve on it

by collecting more texts for the minority categories to

decrease the overall level of class imbalance

And if you cannot? As a second-best strategy, you can

always try to resample the original training dataset

The imbalanced data-set riddle
Resampling is done either by oversampling the minority class

and/or under-sampling the majority class until the classes

are approximately equally represented

Even though both approaches address the class imbalance

problem, they also suffer some drawbacks. The random

undersampling method can potentially remove certain

important data points (and therefore information!), and

random oversampling can lead to overfitting

The imbalanced data-set riddle
Other possibility: Synthetic data generation such as…

SMOTE: Synthetic Minority Over-sampling Technique has

been designed to generate new samples that are coherent

with the minor class distribution

The main idea is to consider the relationships that exist

between samples and create new synthetic points along

the segments connecting a group of neighbors

However always keep in mind that ML algorithm assumes

that the training set is a random sample from the

population of documents to be coded…

Validation: another example

with 3 categories

Here Accuracy is equal to the ratio between the sum of the

diagonal (i.e., the sum of «True Positive») and the total number of

observations, i.e., (5+3+11)/(5+2+3+3+2+1+11)=0.704

Validation
For each category k we can move from here

to here (example for the “cat” category)

Validation
Then:

In the case, Precision for the cat class is: 5/(5+2)=0.71

Recall for the cat class is: 5/(5+3)=0.625

f1 for the cat class is: 2*(0.625*071)/(0.625+071)=0.66

You can do the same thing for the dog and the rabbit cases,
and then averaging across values to have a sense of the
overall performance of your model

Validation

Depending on the application, scholars may conclude that

the supervised method is able to sufficiently replicate

human coders. A largely employed rule-of-thumb is getting

accuracy>.85 for example (or f1>.75)

Or, additional steps can be taken to improve accuracy,

including trying to apply other ML algorithms

Validation

Most algorithms also have a range of “hyper-parameters”

(or “tuning parameters”)– assumptions and modifiers which

are used to fine-tune the model and which can be set to

different values prior to training – that can significantly

impact performance (remember about C in SVM or the

number of trees in RF)

Finding the right set of hyper-parameters for a certain task

and a specific data set is also largely a case of trial and

error, and it can only be done via cross-validation!

Validation

Some packages in R (such as Caret or h2o or the same

Quanteda with the library quanteda.classifiers)

provide ways to automate this task; this is known as a

“grid search”, allowing researchers to exhaustively search

through every combination of a set of hyper-parameters to

find the best performing model

This process can take a lot of time – often in the order of

several hours for algorithms with complex sets of

parameters – but often yields better performance than the

default parameter set

Validation

Moreover remember: the purpose of cross-validation is

model checking!

Accordingly, cross-validation allows also to select among

different machine-learning algorithms!

The No Free Lunch Theorem states that no machine

learning algorithm is always better at predicting new,

unobserved, data points universally. So…

Which is the machine-learning algorithms to prefer given your

specific training-test?!? The one that fares better in cross-

validation!!!

So trust this latter one, when you want to classify the

unlabeled test-set!

Validation: a summary

Two possible routes in this regard according to how you want

to deal with the hyper-parameters:

First route (to success…)

a) You keep the default hyper-parameters of your ML

algorithms;

b) you run a CV on each of such ML algorithms

c) you select the one (or two) with the best performance on

CV

d) you fine-tune the hyper-parameters on such model(s)

e) you re-run CV just on them

f) you keep the ML algorithm that performs better in the CV

Validation: a summary

Two possible routes in this regard according to how you want

to deal with the hyper-parameters:

Second route (to success…)

a) You fine-tune the hyper-parameters on each of the your

ML algorithms you want to test

b) you run CV on each of them

c) you keep the ML algorithm that performs better in the CV

R pakcages to install

install.packages("cvTools", repos='http://cran.us.r-

project.org’)

