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Validation



Validation

Since the ultimate goal of supervised learning is to find 

generalizable patterns of association, models are typically 

subject to some from of regularization - typically in the form 

of a constraint that pushes the model toward parsimony -

and are selected based on their ability to generate 

good out-of-samples predictions

Clearly, it is impossible to evaluate a model's performance on 

the universe of unsampled test instances (i.e., the test set), 

so an approximate measure of performance must be 

devised



Validation

Supervised methods are designed to automate the hand 

coding of documents into categories or measuring the 

proportion of documents in categories as we have already 

noticed

If a method is performing well, it will directly replicate the 

hand coding. If it performs poorly, it will fail to replicate the 

coding – instead introducing serious errors

This clear objective implies a clear standard for evaluation: 

comparing the output of machine coding to the output of 

hand coding. From here the idea of validation!



Validation

The ideal validation procedure would divide the data into 

three subsets

1. Initial model fitting would be performed on the training-set

2. Once a final model is chosen, a second set of hand-coded 

documents - the validation set - would be used to assess 

the performance of the model

3. The final model would then be applied to the test to 

complete the classification



Validation

This approach to validation is difficult to apply in most 

settings. But cross-validation (also called: K-fold 

validation) can be used to replicate this ideal procedure 



Validation

In K-fold cross-validation, the training set is randomly 

partitioned into some groups (say two: K1 and K2)

For each group, the first model is trained on K1, then applied 

to the K2 to assess performance; similarly a model is 

trained on the K2 and then applied to K1 to assess 

performance

Then you take the average across the results you get in the 

two scenarios



Validation

And if you want to run a K-fold cross-validation with K 

larger than 2? 

The algorithm is as follow:

1. Randomly split the data set into k-subsets (or k-fold) (for 

example 5 subsets)

2. Reserve one subset and train the model on all other subsets 

(4 in this case)

3. Test the model on the reserved subset and record the 

prediction error

4. Repeat this process until each of the k subsets has served 

as the test set

5. Compute the average of the k recorded errors. This is called 

the cross-validation error serving as the performance 

metric for the model



Validation

So, for example, with K-fold cross-validation=5… 



Validation

Typical question, is how to choose right value of k?

Lower value of k is more biased and hence undesirable. On 

the other hand, higher value of k is less biased, but can 

suffer from large variability

In practice, one typically performs k-fold cross-validation 

using k = 5 or k = 10, as these values have been shown 

empirically to yield test error rate estimates that suffer 

neither from excessively high bias nor from very high 

variance



Validation

When you run a ML algorithm on the test-set, there are no 

available statistics to control for the goodness-of-fit of your 

prediction (by definition the “true” values of the test-set are 

unknown!)

That is why cross-validation is so important! This is the only 

way to control if the ML algorithm you are using is doing a 

good job or not (unless you are ready to believe in that by 

fiat)!

Moreover, cross-validation avoids overfitting by focusing on 

out-of-sample prediction and selects the best model for 

the underlying data from a set of candidate models



Validation

Which statistics (or performance metrics) should we use to 

assess model performance?

There are several of them, but we are going to focus on three

metrics for individual classifiers with text-analysis



Validation

Accuracy: proportion of correctly classified documents

While of course we want this score to be as high as possible, 

it can also be important to look at the two components 

which make up that score, known as recall and precision



Validation

Recall or Sensitivity (for a category k) is a measure of what 

proportion of instances of a given category the algorithm 

correctly identified; so for example, if there were 10 

instances of the category “positive” in the data set, and the 

algorithm correctly identified 8 of them, we would say that 

this algorithm has “recall of 0.8 for the category positive” 

✓ given that a human coder labels a document as belonging 

to category k, what is the chance the machine identifies 

the document?



Validation

Precision or Positive Predictive Value (for a category k) on 

the other hand is a measure of how many of the times the 

algorithm identified a category were actually correct, as 

against how many times were false positives. In the above 

example, where the algorithm correctly identified 8 of the 10 

instances of positive, perhaps the algorithm also miss-

identified 4 other documents as positive - so 8 out of its 12 

positive classifications were correct, allowing us to say that it 

has a “precision of 0.667 for the category positive” 

✓ given that the machine guesses category k, what is the 

probability that the machine made the right guess?



Validation

If you find market differences between the recall and 

precision (for example, with a recall rate >> precision) 

implies that your algorithm guesses too often that a 

document belongs to category k 

The result is that it labels a large portion of the human 

coder’s as k correctly (and so you have a high recall 

rate). But it also includes several documents that humans 

label differently (and so you have a low precision)

This sometimes applies when the original k category, 

compared to the other 𝑘𝑛−1 categories, is the most 

relevant category in the training-set



Validation

The aggregate of the recall and precision scores for a 

category is known as the f1 score

More precisely, the traditional F-measure or balanced F-

score (f1) is the harmonic mean of precision and recall:

f1 = (2 * precision * recall) / (precision + recall)…

…where the highest level of performance (of f1) is equal to 1 

and the lowest 0 



Validation

The average of the f1 scores for all the categories is a 

reasonable rough measurement of the performance of the 

algorithm (more than accuracy alone!)

However, before using the algorithm for any serious analysis 

work, it is advisable also to take a look at the precision and 

recall scores for individual categories - you may find that a 

category you are planning to use in your analysis actually 

has very high rate of false-positive or false-negative 

identifications, which could cause serious problems for 

your results

Let’s an example on how to compute the statistics we 

discussed up to now from the Confusion matrix



Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionBlack=
TrueB+ FalseB

TrueB

RecallBlack =
TrueB + FalseW

TrueB

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1Black =
precisionB+ recallB

2 * precisionB* recallB

Think

horizontally

Think

vertically



Performance metrics: an 
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionBlack =
800+ 100

= 0.88
800  

RecallBlack =
800+ 50

= 0.94
800

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 Black =
.88+ .94

= 0.91
2*.88*.94



Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionWhite =
TrueW+ FalseW

TrueW

RecallWhite =
TrueW + FalseB

TrueW

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1White =
precisionW + recallW

2 * precisionW * recallW

Think

horizontally

Think

vertically



Performance metrics: an 
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionWhite =
50+ 50

= 0.5
50

RecallWhite =
50+ 100

= 0.33
50

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 White=
.5+ .33

= 0.39
2*.5*.33



Performance metrics
In this example you are going to have a single Accuracy 

value=0.85

Then you could take the average of the F1 scores for the 

classes as another (and more reliable) measure of the 

performance of the algorithm

In our case: (.91+.39)/2=.65

You see the difference here between Accuracy and the 

averaged F1 score. This difference is due that we are 

doing well with the Black class, but relative poorly with the 

White class



Validation
As already underlined, in some given circumstances 

Accuracy is not a reliable metric for the real performance 

of a classifier

This happens with a greater likelihood when your data set is 

highly unbalanced (that is, when the numbers of 

observations in different classes vary greatly)

For example, if there were 95 cats and only 5 dogs in the 

data, a particular classifier might classify all the 

observations as cats

The overall accuracy would be then…how much? 



Performance metrics: an 
example

Confusion matrix:

Accuracy =
95 + 0

95+ 4 + 1 + 0
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

Accuray seems hight but compared to a natural

benchmark (i.e., assinging all the observations to the 

most frequent class)? 

In this case: 95% so Accuracy==to a random draw!



Validation
Moreover, in this same circumstance, the classifier would 

have a recall rate (sensitivity) for the dog class equals 

to…? And for the cats equals to…? [think vertically!]



Performance metrics: an 
example

Confusion matrix:

Accuracy =
95+ 0

95 + 4 + 1 + 0
= 0.95

RecallDogs =
0 + 4

=   0
0

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

RecallCats= 9 5 + 1
=   0.989

95



Validation
If you have a very imbalanced datasets, besides the average 

value of F1, you could also decide to focus on Balanced 

Accuracy rather than Accuracy

It is defined as the macro-average of the recall obtained on 

each class

In our previous example of cats & dogs:

Accuracy: 0.95

Balanced Accuracy: (0.989+0)/2=0.495



The imbalanced data-set riddle
Summing up: if you have a very imbalanced data set (i.e., a 

data set that contains many more samples from one class 

than from the rest of the classes) you could have a very 

hard day with any ML algorithm!  Why? 



The imbalanced data-set riddle
In this scenario, classifiers can have good accuracy on the 

majority class but very poor accuracy on the minority 

class(es) due to the influence that the larger majority class 

produces – i.e., the model will perform badly because the 

model is not trained on a sufficient amount of data 

representing the minority class(es)

This will affect negatively your out-of-sample prediction!



The imbalanced data-set riddle

The existence of a category Ck extremely frequent in a 

training-set can negatively affect 𝑝 𝑪 𝑾



The imbalanced data-set riddle
And so?

Best strategy: go back to your training-set and improve on it

by collecting more texts for the minority categories to 

decrease the overall level of class imbalance

And if you cannot? As a second-best strategy, you can 

always try to resample the original training dataset 



The imbalanced data-set riddle
Resampling is done either by oversampling the minority class 

and/or under-sampling the majority class until the classes 

are approximately equally represented

Even though both approaches address the class imbalance 

problem, they also suffer some drawbacks. The random 

undersampling method can potentially remove certain 

important data points (and therefore information!), and 

random oversampling can lead to overfitting



The imbalanced data-set riddle
Other possibility: Synthetic data generation such as…

SMOTE: Synthetic Minority Over-sampling Technique has 

been designed to generate new samples that are coherent 

with the minor class distribution

The main idea is to consider the relationships that exist 

between samples and create new synthetic points along 

the segments connecting a group of neighbors

However always keep in mind that ML algorithm assumes 

that the training set is a random sample from the 

population of documents to be coded…



Validation: another example 

with 3 categories

Here Accuracy is equal to the ratio between the sum of the 

diagonal (i.e., the sum of «True Positive») and the total number of 

observations, i.e., (5+3+11)/(5+2+3+3+2+1+11)=0.704



Validation
For each category k we can move from here

to here (example for the “cat” category)



Validation
Then:

In the case, Precision for the cat class is: 5/(5+2)=0.71

Recall for the cat class is: 5/(5+3)=0.625

f1 for the cat class is: 2*(0.625*071)/(0.625+071)=0.66

You can do the same thing for the dog and the rabbit cases, 
and then averaging across values to have a sense of the 
overall performance of your model



Validation

Depending on the application, scholars may conclude that 

the supervised method is able to sufficiently replicate 

human coders. A largely employed rule-of-thumb is getting 

accuracy>.85 for example (or f1>.75)

Or, additional steps can be taken to improve accuracy, 

including trying to apply other ML algorithms



Validation

Most algorithms also have a range of “hyper-parameters” 

(or “tuning parameters”)– assumptions and modifiers which 

are used to fine-tune the model and which can be set to 

different values prior to training – that can significantly 

impact performance (remember about C in SVM or the 

number of trees in RF)

Finding the right set of hyper-parameters for a certain task

and a specific data set is also largely a case of trial and 

error, and it can only be done via cross-validation!



Validation

Some packages in R (such as Caret or h2o or the same 

Quanteda with the library quanteda.classifiers) 

provide  ways to automate this task; this is known as a 

“grid search”, allowing researchers to exhaustively search 

through every combination of a set of hyper-parameters to 

find the best performing model

This process can take a lot of time – often in the order of 

several hours for algorithms with complex sets of 

parameters – but often yields better performance than the 

default parameter set



Validation

Moreover remember: the purpose of cross-validation is 

model checking!

Accordingly, cross-validation allows also to select among 

different machine-learning algorithms! 

The No Free Lunch Theorem states that no machine 

learning algorithm is always better at predicting new, 

unobserved, data points universally. So…

Which is the machine-learning algorithms to prefer given your 

specific training-test?!? The one that fares better in cross-

validation!!!

So trust this latter one, when you want to classify the 

unlabeled test-set!



Validation: a summary

Two possible routes in this regard according to how you want 

to deal with the hyper-parameters:

First route (to success…)

a) You keep the default hyper-parameters of your ML 

algorithms;

b) you run a CV on each of such ML algorithms

c) you select the one (or two) with the best performance on 

CV

d) you fine-tune the hyper-parameters on such model(s)

e) you re-run CV just on them

f) you keep the ML algorithm that performs better in the CV



Validation: a summary

Two possible routes in this regard according to how you want 

to deal with the hyper-parameters:

Second route (to success…)

a) You fine-tune the hyper-parameters on each of the your 

ML algorithms you want to test

b) you run CV on each of them

c) you keep the ML algorithm that performs better in the CV



R pakcages to install

install.packages("cvTools", repos='http://cran.us.r-

project.org’)


