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Abstract
The large majority of inferences drawn in empirical political research follow frommodel-based associations

(e.g., regression). Here, we articulate the benefits of predictive modeling as a complement to this approach.

Predictive models aim to specify a probabilistic model that provides a good fit to testing data that were not

used to estimate themodel’s parameters. Our goals are threefold. First, we review the central benefits of this

under-utilized approach from a perspective uncommon in the existing literature: we focus on howpredictive

modeling can be used to complement and augment standard associational analyses. Second, we advance

the state of the literature by laying out a simple set of benchmark predictive criteria. Third, we illustrate our

approach through a detailed application to the prediction of interstate conflict.

1 Introduction

Most empirical political science research relies on model-based associations (e.g., regression)

in observational data to test hypotheses and develop explanations of the phenomena under

study (Druckman et al. 2006). Much emphasis is typically placed on the theoretical specification

of a statistical model, which we agree is important, while much less emphasis is placed on

evaluating the predictive performance of the model. We propose thinking about the role of

prediction in theory building as a continuum, inwhich standardmodels are subject to increasingly

strong predictive tests. Key distinctions occur where prediction-based validation is shifted from

in-sample (e.g., predicting the data used to fit the model) to out-of-sample (e.g., predicting data

not used to fit the model) and again when prediction is used to learn about the process of

interest independent of existing theory rather than to validate a theoretically drivenmodel. In the

current article, we (1)make the case that predictivemodels are under-used in political science, (2)

elucidate what we see as their most attractive features, and (3) demonstrate how prediction can

augment association-basedmodeling and even lead to new discoveries.

The chronic lack of emphasis onmodel validation in political science risks a situation in which

most inferences rely onmodels thatmight fit poorly andmakes the contributions of new research

on established topics ambiguous at best. What is more, the field’s reticence to use prediction

often prevents us from refining our measures and models, and making objective comparisons of

the performance of competing theories. Science is meant to be a cumulative enterprise, but the

lack of clear, performance-based, model evaluation makes it difficult, if not impossible, to judge

the relative contribution of new empirical work relative to the existing literature. Furthermore,

the lack of cumulative/benchmark predictive assessments renders it similarly difficult to judge

overall scientific progress on a specific outcome. All of this together serves to limit on our ability

to advance political inquiry.

We have three goals in this work. First, we catalog the dangers associated with conducting

model-based inference without assessing predictive performance, while also pointing out some
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ways in which assessing predictive performance can bolster our inferences. Second, we lay out

the criteria for what we believe should constitute a benchmark predictive model: one based

either on the “state-of-the-literature” model if one is available or on the structure endogenous

to the outcome variable if the researcher is establishing his or her own baseline, both using

out-of-sample predictive accuracy as the sole criterion for model quality. Third, we illustrate our

approach in application to the prediction of the initiation of serious interstate conflicts. This

illustration yields several interesting, and perhaps unexpected, results: models based only on the

endogenous structure of the outcome variable generally outperformmodels based on exogenous

predictors, models combining endogenous and exogenous predictors generally predict worse

than models based only on the outcome variable, and many of the best established variables in

the literature contribute little to themodel’s predictive accuracy. In summary, we aim to explicate

and illustrate how the evaluation of predictive performance can be better utilized with the end

goal of strengthening the model-based inferences on which we so often rely to advance the state

of knowledge in our field.

2 Prediction and Inference

The technical distinction between inferential modeling and predictive modeling is rather

straightforward, though the practical distinction for the applied researcher is much less so.

In inferential modeling, the statistical model is constructed as an operationalization of a

theoretical model. The specification is important because deviations from the theoretical model

in operationalization inhibit our ability to use the statistical model to test hypotheses. The

coefficients are the objects of interest, which is to say that the statisticalmodel itself is the object of

interest. In inferential modeling, we use the data to learn about the statistical model. Conversely,

in pure predictive modeling, the objects of interest are the variables rather than the parameters:

we use the available data to produce the best possible predictions of the outcome variable. It

does not matter, for purely predictive exercises, whether the statistical model used is a close

operationalization of a causal theory, because the only metric for the quality of a model here is

its predictive performance (Shmueli 2010). A subtler difference is that inferential models aim to

minimize bias in order to produce the most accurate coefficient estimates, whereas predictive

models minimize the combination of bias and estimation variance in order to optimize empirical

precision (Shmueli 2010, p. 293).

When we say that the practical distinction between inference and prediction is less

straightforward, we mean that inference can be augmented by prediction. Possibly greatly.

Consider a continuum in which prediction is applied increasingly strongly. This continuum is

illustrated in Figure 1. On one end of the continuum, the researcher does not use predictive

methodology at all. Here, no validation of the model takes place; the researcher simply runs

the model, interprets the results, and concludes. The following section will make clear that this

approach suffers from a number of problems that could be ameliorated by predictive modeling.

Moving right on the continuum, we consider in-sample approaches to prediction. “In-sample”

means that the same data used to fit the inferential model are used in the predictive exercise.

Examples of in-sample techniques that are frequently applied include the R 2 and AIC statistics.

Some other common techniques, such as plotting the receiver operating characteristic (ROC)

curve (Fawcett 2006) or posterior predictive checks in a Bayesian context (Gill 2014), can be

applied either in-sample or out-of-sample.

As we move further right on the continuum, we reach the first of two conceptually important

cutpoints: the point at which validation-driven prediction is made out-of-sample as opposed to

the in-sample prediction further left on the continuum. Here wemust draw a distinction between

two samples (datasets) used in predictive modeling: the training set and the test set. The training

set is the set of data upon which the predictive model is built. One generally tries to capture
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Figure 1. A conceptual continuum between no prediction and pure prediction. Political science research

tends to fall around the left side of this continuum whereas fields like computer science tend to fall to the

right of it.

the process of interest in the training set, often by making iterative adjustments to the statistical

model. In out-of-sample prediction, themodel produced on the training set is then applied to the

test set to estimate generalization error. Generalization error is the prediction error of a model

when applied to the general population of interest (i.e., beyond the sample on which the model

was trained) (Nadeau and Bengio 2003). In-sample prediction, by contrast, functions similarly on

the training set, but then tests predictive accuracy on the training set as well (a test set is not used

in in-sample prediction) (Attewell, Monaghan, and Kwong 2015).

Our search and review of the literature suggests that the majority of political science analyses

fall into the left two categories of this continuum, using in-sample validation or no validation at

all. To provide some evidence for this claim, we searched JSTOR (dated 5-16-2016) for (“cross-

validation” OR “out-of-sample”) published in political science journals since 2005, and found 283

results. As a point of comparison, a search for “logistic regression” (OR “logit”) with the same

search parameters returned 3,151 results. Our aim for the remainder of the article is to convince

the reader that our field can profit from occupying spaces of the continuum further right.

Cross-validation can take many specific forms, but generally involves randomly dividing the

data into several partitions, fitting the model of interest on all data not in a given partition, and

then testing the model with the held-out partition. This process is then repeated for all partitions

and the mean error is reported (Stone 1974, 1977). Depending on the size of the dataset and the

number of test partitions used, this techniquemay be computationally expensive (Faraway 2006).

Cross-validation has been used in every subfield of political science. For example, Beck, King, and

Zeng (2000) use it to evaluate the performance of several conflict models they had fit.

A simple and powerful alternative to cross-validation is to hold the training and test sets as

completely distinct datasets. Typically, a test set of 30–50% of the primary data is randomly

sampled and set aside while the model is trained on the remainder (Attewell, Monaghan,

and Kwong 2015). This setup has the elegant feature that, because the test set was randomly

partitioned from the training set, the only thing the two have in common in expectation is

the data generating process. Thus, if a model fits the test set well, one can expect that key

elements of the data generating process are captured in the theoretically informed model. For

example, Goldstone et al. (2010) found that a relatively simple model greatly increases predictive

power and casts doubt on the role of established covariates in the prediction of civil conflicts.

More recently, applying this concept to longitudinal data Cranmer, Menninga, and Mucha (2015)

find that inclusion of their “Kantian Fractionalization” measure—a summary measure of degree

of clustering and cluster cohesiveness across international networks of trade, IGO, and joint

democracy—adds more to the predictive performance of a typical conflict model than all the

standard control variables combined and that joint democracy makes a negligible contribution

to the prediction of conflict.

The rightmost extreme of the continuum uses the training/test set setup to learn, as opposed

to prediction to validate, in an approach often called machine learning. This is the second

conceptually important cutpoint on the continuum: in this extreme space of the continuum, one is
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no longer seeking tovalidatea theoretically informedmodel, but seeking to learnamodel fromthe

data by minimizing generalization error through predictive experiments. A hallmark of machine

learning is that the training set may be mined in an unsupervised manner (e.g., with no specific

model specified and no application-specific rules as to how themining should be conducted)with

the goal of finding a specification that predicts the test set as well as possible. In other words,

machine learning algorithms are designed toperformbetterwithmoredata; they “learn” from the

data theyhaveexperiencedand they learnmore frommoreexperience. AsHua, Cuiqin, andLijuan

(2009, p. 978) note, concisely, “Machine learning is a subject that studies how to use computers to

simulate human learning activities.”

Machine learning can be useful for theory building because it can uncover patterns that might

not have been obvious or intuitive to the theory-building analyst, and, on the other hand, can

suggest features or sets thereof that should be excluded from the model altogether. However,

themachine learning approach is relatively uncommon in political science. Consider the example

of Desmarais and Cranmer (2011): analyzing a large set of measures computed endogenously on

the network of transnational terrorist attacks (an individual from country i attacks a target in

country j ), Desmarais and Cranmer (2011) mine the set of specifications to produce a model that

predicts new attacks out-of-samplewithmore than 95%accuracy andwith probabilities assigned

to attacks that ultimately occur several orders of magnitude higher than attacks that ultimately

do not occur. More recently, Muchlinski et al. (2016) found that a machine learning approach

significantly increases the predictive accuracy of civil-war models.

3 The Utility of Prediction

Understanding the statistical differences between prediction and explanation is necessary

to elucidate the distinctive utility of the two endeavors. More important, however, are the

contributions predictivemodeling canmake to our explanatory understanding. The contributions

are many, leading us to claim that an exclusive focus on explanatory modeling omits a great deal

of leverage predictive modeling can lend to the explanatory exercise.

3.1 Systematically observing nature
In theory, most political science research begins with a novel hypothesis, and follows the model

of hypothetico-deductivism in which empirical expectations are deduced from the hypothesis,

with empirical tests to follow (Clarke and Primo 2007). This skips a crucial step in the scientific

process: exploratoryobservationofnature. Tobeclear, naturehere refers to thepolitical processes

of interest, and also the environments in which they occur. Observation is critical to forming new

hypotheses because it is the observation of associations and the consideration of their potential

causal relationships that forms the backbone of theoretical development. Yet typically we rely on

our reading of history and the existing literature to constitute our observation of nature. Theuse of

predictive models can uncover unknown patterns and new causal mechanisms in complex data.

The first thing predictive modeling offers us is the opportunity to observe nature in a systematic

way. By finding newpatterns, inductively, wemay formnewhypotheses aboutwhy those patterns

exist and, through subsequent tests, improve the state of our science (Gurbaxani and Mendelson

1990, 1994; Collopy, Adya, and Armstrong 1994; Shmueli 2010).

Not systematically observing the phenomenaof interest prior to hypothesis formation involves

the rather bold claim thatwe do not need such empirical tools because our powers of observation

are so keen that we are able to detect all meaningful patterns in the extremely complex

phenomena we study, so as to be able to completely and correctly specify not only our theories,

but our explanatory statistical models (where complete and correct specification is a statistical

necessity if one hopes to test a theory). Particularly as political science moves into the era of “big
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data,” it seems increasingly unlikely that a researcherwill be able todetect allmeaningful patterns

without a predictive model.

3.2 Refining measures andmodels
Predictivemodels can play an important role in the refinement of bothmeasures and explanatory

statistical models. In the following list we denote three related ways in which predictive

assessment can aid in improving explanatory models.

RefiningMeasures. Predictivemodeling can help us refine our operationalizations of important

theoretical concepts. This can be accomplished in two ways: predictive exercises may be

conducted to discover newmeasures (VanMaanen, Sørensen, andMitchell 2007; Shmueli 2010) or

to test the efficacy of competing operationalizations against one another (Shmueli 2010). Equally,

if not more usefully, predictive accuracy is an impartial criterion by which to evaluate competing

operationalizations of the same concept.

Refining Models 1: Parsimony. Predictive models provide ameans for impartially evaluating the

parsimony of an explanatorymodel (Jensen and Cohen 2000). There has been somedebate in the

literature about how parsimonious an explanatory model should be, with Achen (2002) arguing

for few (3) variables, others arguing that more is better to avoid omitted variable bias (Oneal

and Russett 2005), and many more moderate perspectives in between. Yet prediction, especially

out-of-sample prediction, is a useful way to tune the parsimony of a model because predictive

exercises allow one to judge how much impact is being made by each element of the model in

terms of its contribution to predictive performance (Hastie, Tibshirani, and Friedman 2009; Kuhn

and Johnson 2013).

Refining Models 2: Diagnosing Misspecification without Overfitting. Out-of-sample predictive

exercises can be used to identify model misspecification without running the risk of overfitting

the data. Predictive models are natural tools for identifying model misspecification because

misspecified models are necessarily poor predictors. However, overfitting—including excess

parameters that exploit artifacts of the data without capturing the data generating process—can

often disguise misspecification by moving the model toward saturation. When predicting out-of-

sample, the latter disguise will not work and the prior problemwill be apparent.

3.3 Objective comparison of model quality and competing theories
Predictive models afford the researcher the ability to test the quality of an explanatory model

against more realistic null models or even against rival theoretical models.

Better Null Models. Truly null models, where there is absolutely no relationship between a

dependent variable anda setof independent variables, arequite rare inpolitical science.Why then

do we test our theoretically informed models against null models that are so unlikely to occur?

Thinking about it this way, the claim that “my model fits the data better than a spectacularly

unlikely model” rather takes the zip out of claiming statistical significance for an effect. As we

explain below, a baseline comparison model (even a naive one) need not be so simple as a null

model. Rather, one can set reasonable, if simple, criteria for benchmarkmodels andusepredictive

accuracy as a means by which to judge if one’s model outperforms the baseline.

Testing Competing Theories. Predictive ability is an excellent way to compare competing

theories of the same outcome. Using predictive criteria, particularly out-of-sample predictive

criteria, is an exceedingly simplemeans to highlight the extent towhich the theoretically informed

models anticipate reality, and which among those models does a better job of it. Measures of

in-sample fit (e.g., adjusted-R 2, AIC, BIC), and even in-sample prediction, are less-than-ideal

because they run the risk of overfitting the data; accidentally exploiting artifacts of the error

term that are not part of the data generating process in nature. Perhaps more importantly,

certain elements of the competing theories may be mutually exclusive or highly collinear,
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making comparative testing without relying on predictive criteria all but impossible. While direct

comparisons of model fit with nonnested sets of predictors is possible in a Bayesian context,

they are not in a frequentist context (Gill 2014). Yet, using out-of-sample predictive fit to judge

one model against competing specifications (even if they are very similar) is straightforward in

either a Bayesian or frequentist approach and the improvement of model one over the other

can be measured precisely and objectively. For example, in the study of environmental politics

it is well established that both a county’s population and GDP affect its CO2 emissions. But when

including CO2 emissions as a predictor, should thismeasure be normalized by population or GDP?

Apredictive approach, evenoneas simple as cross-validation, coulddomuch todisentangle these

closely related but theoretically distinct predictors.

3.4 Measuring the state of knowledge
Finally, predictivemodelingcan tell ushowwell anexplanatory theory captures thephenomenaof

interest and canprovide anupper boundonwhat canbe learnedby further explanatorymodeling.

Suppose we examine the dominant theory of a particular outcome, say interstate war, and find

that its predictive accuracy is quite low. This tells us that one of two things, or both together,

is happening: either the dominant causes of the outcome have yet to be discovered and much

important work remains to be done in the field, or the outcome exhibits a high amount of “noise”

and a comparatively small amount of natural “signal.” In the first case, wemay conclude that our

theoretical understanding of the phenomena is grossly incomplete and use this conclusion to fuel

a push for improved theory and causal testing. In the second case,wemayhave arrived at a largely

complete explanatory model of the phenomena, but high degrees of imprecision in our ability

to measure the relevant variables produce what appears to be high stochasticity and prevents

accurate predictions. As Shmueli (2010, p. 4) notes, “Predictive modeling plays an important role

in quantifying the level of predictability of measurable phenomena by creating benchmarks of

predictive accuracy.”

Consider alternatively what the field would learn were the dominant theory to produce a

high level of predictive accuracy. If the state of the art predicts well, that tells us that there is

comparatively little that may be gained from continued efforts at explanatory modeling. If the

addition of theory can, at most, produce a marginal increase in predictive accuracy, then such

theory is only capable of giving us marginally more traction on the problem.

4 Establishing a Predictive Baseline

Above, we considered the utility of having a simple but non-null benchmarkmodel against which

to compare the predictive power of theoretically informed models. Such benchmark models can

take two forms: they caneither reflect themost recent or best-acceptedmodel already established

in what we will call a “state-of-the-literature” model, or they can reflect the best model one can

specify without relying on theory in what we call a “baseline”model. In principal, using a state-of-

the-literaturemodel is straightforward. In practice however, suchmodels can be difficult because

(a) most political science research does not provide predictive results against which an analyst

may easily compare new results and (b) replicating the state-of-the-literature model to produce

suchapredictivebenchmark is oftennot as easyas it shouldbe.1 In situationswherea state-of-the-

literature model is not available or not desired, establishing a reasonable baseline model will be

important. Indeed, onemaywish to establish a baselinemodel evenwhena state-of-the-literature

model is available in order to judge the predictive gains offered by the state-of-the-literature

model.

1 The latterof theseproblems is, hopefully, decreasingover timeas it becomesmorecommon for researchers topublish their

replication data/code and an increasing number of journals are requiring such replication materials to be made public.
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Here, we propose a general criteria for baseline benchmark models. The proposed criterion,

we argue, is the best model one can specify without reflecting the proposed theory. As such,

the baseline model is similar to null model comparisons common in statistical mechanics, but

less naive. Such baseline models are useful in cases where the researcher is establishing her own

baseline model as opposed to comparing her model to one specified by previous researchers.

We propose three criteria for creating predictive benchmarks that can be applied to any social

science outcome observed longitudinally. In fact, it is important to point out that a necessary

condition for a strong benchmark model should be that it is transportable to different outcomes

andnot tailored toonespecific application. Such transportability canafford thebenchmarkmodel

and its interpretation in terms of howwell our explanatorymodels explain a given outcome a high

degree of consistency across applications.

First, we propose that the only data to be used in benchmark predictive models should be

from the outcome variable. Not only does this increase the portability of the benchmark model’s

structure to other outcomes, but, more importantly, an outcome-onlymodel represents themost

substantively simplemodel that can be created. In terms of assembling an explanatorymodel, an

outcome-only model represents the most parsimonious option – the outcome variable following

a self-determining dynamic.2 To create such a model, say of international conflict, we need

only to have substantive knowledge of international conflict. Adding covariates complicates the

substance of the problem greatly; if we regress conflict on joint democracy, trade, and common

IGOmembership, wemust have substantive knowledge of each of those covariates, confidence in

the measures, and understand the processes by which they relate to conflict.

All of this is not to say that an outcome-onlymodel is structurally simple, suchmodels are often

quite complicated in their underlyingmathematical forms. Aside from the rather obvious effect of

previous observations on current observations (e.g., autocorrelation), political science is marked

by powerful endogenous effects thatmanifest through networks of interactions and associations,

latent or observed, within the outcome variable. In other words, without including the complexity

of exogenous covariates, there is often much structure that can be included in an outcome-only

model. For example, recent studies have shown that, in networks, certain endogenous structures

are transportable across outcomes (Hanneke, Fu, and Xing 2010; Cranmer and Desmarais 2011;

Cranmer, Desmarais, and Menninga 2012; Cranmer, Desmarais, and Kirkland 2012; Desmarais and

Cranmer 2010, 2011, 2012).

As a second criterion, we argue that all predictions must be made strictly out-of-sample. The

reasons for this are simple. First, in-sampleprediction is not truepredictionbecause it is predicting

observations that have already occurred within the training set. From a statistical perspective,

it matters little whether the observations being predicted out-of-sample have yet occurred in

nature, butmorewhether they have yet occurred in the training set. Second, in-sample prediction

runs the risk of leaving a model that overfits the data undetected. Overfitting occurs when the

statistical model captures artifacts of the dataset (i.e., random error) that are not part of the

data generating process. An overfitted model will typically produce good in-sample predictions,

but poor out-of-sample predictions because the artifacts of the training set it exploited do not

carry over to the test set. As such, developing a model that predicts well in-sample may reflect

less of a thorough understanding of the data generating process than a model that predicts well

out-of-sample.

Designs for assessing out-of-sample model fit can take many forms, and may depend upon

the format of the data. For a dataset of completely exchangeable observations (e.g., survey data),

2 We want to note an important consideration in building an explanatory model while using a baseline model that includes

functions of the lagged dependent variable. The time lag should be specified to either predate or be contemporaneous to

any variables in which the researcher is interested in interpreting causally. The identification of a causal relationship can

be compromised by conditioning on a posttreatment control variable (i.e., a variable determined after the determination

of the causal variable of interest) (Keele 2015).
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randomly splittingobservations into trainingand test setsorpartitioning thedata into k validation

sets that are used sequentially both for estimation and testing (i.e., k -fold cross-validation)

is a common approach (Jensen and Cohen 2000). Cross-validation is a robust and adaptable

methodology that has been shown to perform optimally in terms of model selection for several

classes of model selection problems (see, e.g., Hall 1983; Nowak 1997; Droge 1999; van der Laan,

Dudoit, and Keles 2004). When the data are organized according to a common dependence

structure such as longitudinal/panel data or clusters, whole groupings (e.g., time periods) can be

omitted as the hold-out sample (Rakotomalala, Chauchat, and Pellegrino 2006).

Evaluating a model on an independent test set is not a silver bullet for model selection

in a single finite study. It is still possible to overfit the data using hold-out methods such as

cross-validation. As such, since the test set(s) in any one study have already been exploited to test

multiple models, it is important that future studies of the same process either grow the test set(s)

or use completely new and independent test set(s). Generalization error is the prediction error of

a model on data from the same population, but outside of the sample. Cawley and Talbot (2010)

show that, even though cross-validation is a nearly unbiasedmethod of estimating generalization

error and single-split-sample (i.e., training/test) estimation is unbiased, the variability with which

hold-out methods estimate generalization error can lead to overfitting in a finite sample. In

other words, any one test set may lead to the inclusion of more variables or model components

than exist in the true model. Cawley and Talbot’s (2010) results emphasize the importance of

accumulatively growing the sample of test data and replicating past studies in order to realize

the long run benefits of testing on held-out data.

Our last criterion for a good benchmark predictive model is that the criterion for judging

predictive accuracy must be appropriate for the distributional features of the predicted variable.

This is an important point, but one for which it is difficult to provide general advice. For example,

the most relevant feature when it comes to a dichotomous variable is the rarity of “positive”

events. Standardmetrics for judging predictive accuracy, the ROC curve in particular, can produce

misleading results when applied to rare events because this criteria weights the prediction of

events and nonevents equally. Consider the case of predicting war: war is rare and a (useless)

model never predictingwarwill be overwhelmingly correct. In our application below, we consider

this problem specifically and introduce alternative criteria for judging predictive accuracy.

5 Illustrative Application: Predicting International Conflict

We now endeavor to demonstrate as many of the advantages of predictive models discussed

above as possible within the confines of a single example. We attempt the prediction of violent

international conflict, something notoriously hard to predict, and consider what predictive

modeling can teach us about this process.

5.1 The paucity of predictive models of interstate conflict
Empirical analysis in conflict processes research relies almost exclusively on explanatory

modeling, typically using regression. Predictive models, which do not necessarily aim to

operationalize a causal theory, are then often seen as the tools of applied scientists or policy

analysts rather than of the basic, explanatory science in which we typically engage (Schneider,

Gleditsch, and Carey 2010, 2011). It is perhaps not surprising then that there is little predictive

work in this field and what does exist is relatively recent.

Beck, King, and Zeng (2000) touched off the contemporary debate on predictive models for

conflict with a study that uses a neural network approach, which predicts 17% of conflicts,

compared to 0% by a conventional logistic regression. This study led to much debate over the

utility of restricting samples to only dyads that had a reasonable chance of conflict in the first

place, and even sparked some interest in neural networks (which we discuss further below),
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but failed to produce a substantial literature on predictive models for conflict. In one of the few

studies of conflict prediction that followed Beck, King, and Zeng (2000), Ward, Siverson, and Cao

(2007) use a Bayesian, Hierarchical, Bilinear, Mixed-Effects model stratified by time to gain an

improvement in out-of-sample prediction, again over a fairly standard logistic regression; in this

case, the one originally proposed by Oneal and Russett (1999). The model offers a substantial

improvement in predictive ability over logit, but does not compare the performance of itsmethod

directly to that used by Beck, King, and Zeng (2000).

One reason the predictive literature on international conflict is so sparse may be that the

structure of the conflict data is such that predictive modeling is difficult with existing technology.

For example, time-series approaches to prediction, well established in both economics and

political science, are difficult to apply to data that span every possible conflictual relationship

in the world over time. None-the-less, there has been a recent increase in predictive work on

other conflict processes, including civil wars (Rost, Schneider, and Kleibl 2009; Ward, Greenhill,

and Bakke 2010), transnational terrorism (Desmarais and Cranmer 2011), and single-conflict time-

series analyses (Pevenhouse and Goldstein 1999; Schrodt and Gerner 2000; Brandt, Freeman, and

Schrodt 2011; Schneider 2012).

5.2 Methods andmeasures

5.2.1 Predictive design
The process of building the predictive models follows that proposed by Desmarais and Cranmer

(2011). First, a predictive network is constructed by aggregating conflict initiations over an interval

preceding t – we consider one-, five-, and ten-year intervals. Second, for each directed dyad i j , a

vector of directed dyadic statistics, denoted δ t−1
i j are computed on the predictive network. These

statistics could include and indicator of whether i initiated a conflict with j during the predictive

time interval, a measure of the total conflict activity of i and j during the predictive time interval,

or the geodesic distance between i and j in the predictive network. Third, a forecasting model

is used to forecast the edge from i to j at time t (N t
i j
). A simple example could be to estimate

the probability that N t
i j

= 1 by 1/(1 + exp(−β ′δ t
i j )) (i.e., logistic regression). Indeed, Desmarais

and Cranmer (2011) formulate their algorithm using a temporal exponential random graphmodel

(TERGM). However, since the predictive network features are all observed prior to the forecasted

edges, their example is a special case of logistic regression (Hanneke, Fu, and Xing 2010).

5.2.2 Competing predictive algorithms
As we set about illustrating the abstract discussion above, and evaluating our proposed

benchmarkmodel against the performance of the contemporary literature,wemust bemindful to

ensure that our comparisons are fair. Specifically, we seek to avoid the “straw man” comparison

in which we apply state-of-the-art predictive methodology and compare our results to those

from a well-cited paper in the existing literature that did not have prediction as its aim; such a

comparisonwouldbeunsatisfying if notmisleading. Instead,we illustrateourpointby considering

three classes of models: those based only on structure endogenous to the outcomemeasure (the

benchmark criteria we proposed above), those based only on exogenous covariates (capturing

the largemajority of explanatorymodels observed in the literature), and those that combine both

endogenous and exogenous effects.

We optimize each class of model for predictive performance using one of four classification

algorithms: logistic regression, elastic net regularization (i.e., lasso and ridge regression

combined) (Zou and Hastie 2005), boosting, and neural networks. These three algorithms are

all widely used for classification tasks, and vary in terms of how the variables are used for
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classification. We briefly describe each algorithm below.3 For all of the tuning parameters

described below, we set the range of parameter values we test such that none of the optimal

parameter values lie at the boundaries of the range.

Elastic net regularized regression (Zou and Hastie 2005) is performed by adding two terms

to the regression coefficient criterion function (e.g., sum of squared errors, likelihood) that

constitute penalties in both the absolute magnitude (i.e., lasso) and squared value (i.e., ridge) of

the regressioncoefficients. The two tuningparameters inelasticnet regressionare the twoweights

associated with these penalties. The absolute lasso penalty serves to push a subset of variables

that do not contribute enough to the fit of the model to exactly zero. The ridge penalty shrinks

regressioncoefficients towardzero,butdoesnotpush themtoexactly zero. Theelasticnetmethod

combines the functions of selection and shrinkage exhibited by the lasso and ridge regression

methods of regularization, respectively. We seek to render the algorithms we use comparable in

terms of the number of tuning parameters estimated, and therefore set the ridge penalty equal to

twice the lasso penalty.4

We use feed-forward neural networks with a single hidden layer in the predictive experiments.

Neural networks are models that learn some number of functions of the input (i.e., covariate)

variables, which then feed forward to predict the outcome. By combining several possibly

nonlinear functions of thedata, neural networks canapproximate the trueunderlying relationship

between the covariates and dependent variable (Cybenko 1989). There are two tuning parameters

we consider in the neural network application: the number of nodes in the hidden layer of the

neural network, and the regularization (i.e., decay) parameter used to penalize the magnitude of

the coefficients linking the variables to the nodes in the neural network.

The boosting methodology we use involves learning one node decision trees based on the

covariates. Boosting involves reweighting the data in iteratively learning weak classifiers. At

iteration t , a simple classifier is learned with greater weight placed on the data points that are

poorly fit in iterations prior to t . Combining the iteratively learned classifiers (i.e., decision trees)

results in an effective classifier. The important tuning parameter is the number of base/weak

classifiers to be learned and aggregated. We follow the LogitBoost methodology proposed by
Dettling and Bühlmann (2003).

5.2.3 Outcome variable
The outcome variable, on which wemeasure the performance of our predictive algorithms, is the

directed network of conflict initiations, N , aggregated over a one-year interval. The edge from

state i to j at time t is one if i initiated a conflict with j during year t , and zero otherwise. We

only generate conflict forecasts for directed dyads composed of states that were both in the state

system in the previous year because ourmodel is not optimized to forecast the entry of new states

into the system (aprocess usually unrelated to theoccurrenceof international conflict).Weuse the

Correlates ofWar dataset (v3), which covers 1816–2001, andwe focus onoutcomeyears 1979–2001.

5.2.4 Performance criteria
Wepropose that the ROC curve is a fine criterionwhen analyzing data that display a good balance

betweenevents andnonevents (suchas voter turnout), but that the areaunder theprecision recall

(AUC-PR) curve is better suited to the analysis of rare events. Consider the four types of predictions

one canmake for a binary variable, displayed in the left cell of Table 1 basedonDavis andGoadrich

(2006): true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN). Many

3 The R packages used to implement elastic net, boosting, and neural networks are penalized (Goeman, Meijer, and
Chaturvedi 2016), caTools (Tuszynski 2014), and nnet (Ripley and Venables 2016), respectively.

4 We chose to fix the ratio of the ridge and lasso parameters due to issues with sensitivity of the lasso penalty. If the ratio

exceeded 2 by much, we found that the lasso became ineffective—never selecting down the set of variables. If the ratio

were much under 2, the lasso would result in a lack of convergence in the estimation.
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Figure 2. Example data points from which AUCs are constructed. Each point represents a predicted

probability of war produced by at least one of the directed dyads in the most effective model we find in the

modeling exercise in Section 5.

Table 1. Commonmetrics for judging predictive accuracy. The left cell shows the contingency table and the

right cell shows the metrics of interest.

Actual Actual

positive negative

Predicted positive TP FP Precision = TP
TP+FP

Predicted negative FN TN True Positive Rate (a.k.a. Recall) = TP
TP+FN

False Positive Rate = FP
FP+TN

metrics can be computed from the quantities in the contingency table, but three are of particular

interest here: the precision, the true positive rate or recall, and the false positive rate. These

metrics and their computation are displayed in the right cell of Table 1. The ROC curve, familiar to

most subfields of political science, plots the false positive rate on the x -axis and the true positive

rate on the y -axis. Conversely, the PR curve plots recall (the true positive rate) on the x -axis and

the precision on the y -axis, thus focusing on the predictions of those positive events that did

occur. Similar considerations are necessary when dealing with count, continuous, or other types

of variables.5

The challenge, when deciding between the ROC and PR curves, can involve either the rarity

of the subject under study or the importance of accurately predicting events versus nonevents.

We argue here, and show with application below, that the ROC curve is generally inappropriate

when examining rare events. The reason being that the ROC curve weights the value of accurately

predicting nonevents (zeros) the same as accurately predicting events (ones). This is often a

desirable attribute of the ROC, but consider the effects of this weighting when analyzing rare

events. For example, out of the more than one million bilateral wars that could have happened

since 1816, less than 1,000have. As such, amodel that never predictswarwoulddowell by theROC

criterion because it is good at predicting the modal category of no war. In terms of the measures

presented in Table 1, AUC-ROC values look high simply because the false positive rate is nearly

always extremely low due toT N in the denominator including nearly every case in the data.

In contrast, AUC-PR does not involveT N . Figure 2 provides a graphical example of howAUC-PR

better represents the predictive task than AUC-ROC for rare events. It depicts the results from

our best performing war prediction model found in the analysis below. In both the PR and ROC

5 Replication data are posted to the Political Analysis Dataverse (Cranmer and Desmarais 2016a).
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curves, points move from left to right on the plot by lowering the predicted probability threshold

at which a positive is predicted. From the AUC curve, it can be seen that the FPR is small for all

but the smallest thresholds, and the vast majority of the area under AUC resides under a curve

extrapolated over fewer than ten cases. Because the PR curve does not involveT N , there is much

less skew in where the points reside on the curve. In addition, because the height of the curve

decreases with the x -axis, the majority of the area under the PR curve resides under the bulk of

the points observed in the data, lending greater confidence in the certainty about the value of

AUC-PR.6 Furthermore, in a recent simulation-based comparisonof AUC-ROCandAUC-PR,Ozenne

et al. (2015) show that AUC-PR performs more effectively than AUC-ROC in selecting diagnostic

biomarkers in rare diseases.

5.2.5 Measures
There are three classes of predictive measures in our analysis – those that rely solely on past

iterations of the conflict network to predict conflict at time t (endogenous network measures),

those that are built using additional data sources (exogenous covariates), and those that are

something of a hybrid between endogenous and exogenous; we call these semi-endogenous. We

present the components of these classes.

In keeping with our proposed benchmark criteria, in which the benchmark model is created

using only the outcome variable, we consider several measures endogenous to the conflict

network. All of these endogenous measures are designed to capture the similarity of any two

nodes in anetwork in termsof certain specific network structures. Networks offer a representation

that permits the extension of endogenous effects beyond the individual dyad. We draw upon the

networks framework to formulate the best possible candidate model(s) of endogenous effects.

As such, the endogenous effects we include can be thought of as proximity measures, in network

space, between any two states in the system of interlocking conflicts. We follow Desmarais and

Cranmer (2011) in our selection of endogenous effects. These effects include the following:

• Flow: The product of the number of conflict initiations sent by the prospective conflict sender

in adyad, and thenumberof conflict initiations receivedby theprospective recipientof conflict

in a dyad.

• Common Community: An indicator of whether two states were in the same community,

as determined by an algorithm for community detection in networks. Community detection

algorithms partition the network into sets of actors that tie with each other at a much higher

rate than would be expected based on the number of ties to and from each actor. We use the

“walktrap” community detection algorithm (Pons and Latapy 2005).

• Common Combatants: The number of third states with which both states in the dyad went to

war within the lagged interval.

• Adamic–Adar Similarity: Similar to common combatants, but each third state is added to the

count of commoncombatantswith aweight that decreases logarithmicallywith the number of

other connections held by that third state (i.e., adjusting for the intuition that sharing a partner

that itself has many other ties may not indicate proximity between two states) (Adamic and

Adar 2003).

• Jaccard Similarity: Number of common combatants divided by the total number of unique

states to which at least one of the states in the dyad is connected. This measure accounts for

the tendencies for the two states in the dyad to form ties (Leicht, Holme, and Newman 2006).

• MMSBM: Probability of a tie between two states using a mixed-membership stochastic block

model fit to the network in the lagged interval. In a block model, each actor is attributed

6 We use the function auc.pr in the R package minet (Meyer, Lafitte, and Bontempi 2008) to calculate AUC-PR and the
performance function in the ROCR package (Sing et al. 2005) to calculate AUC-ROC.
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with a latent class (or block). The blocks are defined by probabilities of interaction with all

other blocks. A block model is a simple latent class model for predicting ties in networks. The

mixed-membership variant allows actors to be in each class with varying probabilities (Airoldi

et al. 2008).

• Latent Space Distance: The latent space model for networks is another latent variable model

for fitting the probability of a tie between two actors based on network structure. Similar to

ideal point analysis, each actor is attributed with a latent position in two-dimensional space.

The probability of a tie between two actors is then inversely related to the Euclidean distance

between actors in this space Hoff, Raftery, and Handcock (2002). We fit latent spacemodels to

the laggednetworks and include distances between states in the lagged latent space to predict

conflict.

We are not the first to propose that intertemporal dependencies should play a major role in

models of interstate conflict. Beck, Katz, and Tucker (1998) show that the likelihood of conflict

between two states at time t depends upon the status of the dyad going back up to 10–15 years,

with recent conflict predicting a relatively high likelihood of current conflict, and the likelihood

of conflict decaying with the number of years of peace in the dyad. Dafoe (2011), in a replication

of Gartzke (2007), demonstrates that accurately modeling temporal dependence is important to

identifying relationships between conflict and state attributes, such as the “democratic peace.”

The endogenous effects we propose specifying above can be seen as an extension of this earlier

work on within-dyad temporal dependence. That is, we hypothesize that the status of the conflict

relationship between states i and j at time t depends not only on the history of conflict between

those two states, but also on features of the historical positions of i and j in the broader conflict

network.

Lastly, we include a series of exogenous covariates that are commonly used in the conflict

literature. While not an exhaustive list, these covariates operationalizemany of themajor theories

of interstate conflict and, at minimum, represent the set of usual controls for such studies. These

covariates are allmeasured at the commonly useddyadic level and include joint democracy, trade

dependence, joint IGO membership, CINC (power) ratio, and the geographic distance between

capitols, as well as indicators for whether the dyad includes at least onemajor power, a defensive

alliance, or physically contiguous states.7

5.3 Results
We seek to illustrate the several virtues of predictive modeling discussed theoretically above.

We do so by considering each predictive virtue in turn. But first, we consider the three rival

machine learning techniques so that we can focus subsequent discussion on the best performer.

In Figure 3, we report the average areas under the PR and ROC curves for all of the estimation

algorithms and model specifications. Averages are taken over years, with each year constituting

a single observation. We also computed nonparametric bootstrap 95% confidence intervals for

each average by simple bootstrap resampling of means. Due to the complex dependence among

dyads within years (Cranmer and Desmarais 2016b), there is no straightforward way to resample

dyads to construct bootstrap confidence intervals. As such, the confidence intervals we construct,

which are based on resampling from twenty three years, are fairly conservative.

We see in Figure 3, that the elastic net performs better on the whole than the boost, which in

turn performs better on the whole than the neural network. While this result may be surprising

given that the elastic net is the simplest of the algorithmswe applied, we also find it intellectually

appealing in its simplicity. One limitation of this result is that, especially when it comes to the area

7 Contiguity, IGO, and CINC data come from the correlates of war project (Singer, Bremer, and Stuckey 1972; Pevehouse,

Nordstrom, and Warnke 2004; Stinnett et al. 2002). Trade data come from Gleditsch (2002). Distance data come from

Gleditsch and Ward (2001). Joint democracy is derived from Polity IV scores (Marshall and Jaggers 2002).
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Figure 3. Comparison of alternative predictive models by different criteria. Both plots show each of the

predictive models, respectively using the dependent variable only, covariates only, and both together with

one-, five-, and ten-year training intervals. The upper plot uses the area under the PR curve as the fit criteria,

the lower plot uses the area under the ROC curve.

under the PR curve, the bootstrap confidence intervals do overlap from one algorithm to another,

so it is not clear that the performance levels of the algorithms are statistically distinguishable.

One characteristic of our predictive models that can be discerned given the averages and CIs in

Figure 3 is that the areas under the PR curve for ourmodels significantly exceed that which would

be expected based on a random ordering of the dyads. If the predicted probability of a positive is

drawn uniformly at random, the expected area under the PR curve is simply the rate of positives

in the test data (which is well under 1% in all of the years in our data) (Lopes and Bontempi 2014;

Esteban et al. 2015).

5.3.1 Quality of the benchmark model and the current state of knowledge
The most interesting result apparent in Figure 3 is that the somewhat naive benchmark model is

the single best predictor: the elastic netmodelwith endogenous network statistics only anda five-

year training window is the best model our analysis was able to produce. The facts that the best

model is outcome-only and that predictive performance is usually decreased when exogenous

covariates are added to the outcome-only benchmark model has troubling implications. This

result suggests that the vast majority of the literature on international conflict, which has not

accounted for endogenous network effects, has missed the dominant predictive attributes of the

conflict process entirely. Also, that predictive power decreases when covariates are added to the

network structure suggest that including both constitutes overfitting the training data, a troubling

implication of the use of covariates indeed.

A secondmajor result reflected in Figure 3 is that the maximum predictive accuracy any of our

models were able to achieve was slightly over 7% by the PR criterion. Substantively, this means

that our strongest model accurately predicts approximately 7% of those conflicts that ultimately

occur (recall that the PR curve focuses on the accurate prediction of events and not the accurate

prediction of nonevents). This is rather less than one would have hoped given the long history
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of the study of international conflict. This suggests one of two things. First, it is possible that the

level of noise-to-signal in the conflict data is quite high, making accurate predictions difficult with

current measures. In other words, there is so much stochastic variation in the data that 7% is the

best we can do under the benchmarking rules we set for ourselves and with available measures,

even though our theories accurately capture the causal process underlying international conflict.

That is to say, even though we may know the data generating process, the process is chaotic and

we lack the ability to measure inputs and starting values with sufficient precision to predict. The

alternative interpretation is that the elephant is in the room, but we have not seen it. In other

words, there is, missing from our current understanding of conflict processes, a (or the) major

determinant of violent international conflicts. Most likely, the truth lies somewhere in-between,

but we nonetheless see this result as cause for deep reflection on the state of our science and how

it may be improved.

5.3.2 Identification of new relationships and dynamics
First, let us consider the “memory” of the process. One thing we notice in Figure 3 is that the

predictive performanceof longer trainingperiods (five and ten years) is nearly universally superior

to one-year training periods (the sole exception being the neural network covariates only model

as judged by the problematic ROC), and usually by a wide margin. It is also notable that, in many

cases, the five-year training window performs better than a ten-year training window, or at least

similarly. These two results, taken together, suggest that much is gained by having a memory

in excess of one year, but comparatively little is gained by jumping from five to ten. This result,

that conflict is a long-memory process, has some troubling implications for applied work on

international conflict. Often times, a one-year lag of the outcome variable is included on the right

hand side of a regression in order to control for temporal dependencies. This result suggest that

this practice is generally inadequate for those purposes, and that lags of at least five years should

be considered in order to achieve the desired effect. For a detailed discussion of how to choose

lag lengths, see Cranmer, Rice, and Siverson (2015).

We can understand the temporal dynamics in greater detail by examining the year-to-year

predictive performance of the elastic net models depicted in Figure 4; one sees that either the

outcome-only model (black line) or the combined outcome-and-covariates model (light gray

line) tend to have similar levels of predictive accuracy and both consistently outperform the

covariates only model. This provides further, and temporal, visualization of the result reported

above, that the covariates only model, more traditional in empirical international relations,

consistently performs the worst out of the three options. Regarding the dynamics, we can see

that there is considerable year-to-year volatility in the predictive performance of each model.

However, the models that include network dependence exhibit a handful of years in which they

perform particularly well at predicting conflict initiations. The covariate-only models do not

exhibit comparable up-swings in predictive performance. This distinct dynamic canbe considered

in contrast to a consistent difference between the covariate-only and dependence termmodels.

Figure 4 also shows that the model, whether using a one-, five-, or ten-year training period

seems to perform at its best around the mid 1980’s and late 1990’s/2000. This is interesting

because it seems to capture the dynamics of the Cold War, drop off a bit in the immediate

aftermath of the Cold War, and then, after some retraining on the differently patterned data, to

do well in the contemporary era.

We further show, for the purpose of illustration, that the more traditional ROC curve, whose

shortcomings when applied to rare events we discussed above, provides deceptively promising

results for these same analyses, suggesting that we predict something on the order of 90% of

the data. We also see an inversion, when considering the ROC curve, between the predictive
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Figure 4. Predictive performance for the elastic net over time. Performance is depicted, in terms of both PR

and ROC, for each of the three specification types, over 1979–2001.

performance of the outcome-only network model and the covariates only model; the latter

consistently doing better than the prior over the range of data considered.

5.3.3 Judging the impact of one variable
Our predictive tests reveal much about the roles played by each variable. We are able to consider

howmuch a given variable contributes at different points in the time series under consideration.

The plots in Figures 5–7 give the abs(elastic net β )/abs(logit β ). When this quantity is high, and

above 1 especially, the corresponding variable has been selected and weighted highly as being

important in predicting conflict. When this quantity is low, the corresponding variable has either

been penalized completely out of themodel or has been downweighted due to the variable’s low

contribution to the predictive performance of the model. Considering the ratio of the elastic net

coefficient to the logistic regression coefficient provides a viewof the degree towhich the variable

is critical to contributing to the prediction of conflict, given the simultaneous contributions of the

rest of the variables. We note here that these feature-level summaries are intended to shed light

on each feature’s relative predictive contribution to the model (i.e., how much the magnitude

of the variable’s effect is deflated or elevated once the algorithm is designed to push effects
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Figure5.Variable effects asmeasuredbyabs(elastic netβ )/abs(logitβ ).When thisquantity is high, elastic net
has not penalized the coefficient down and the variable can be said to be a stronger contributor to predictive

performance. The ratios from the models based on a five-year lagged interval are in black, and those based

ona ten-year lagged interval are in gray. To smooth the lines,wedepict rollingmeansover a three-year period

centered at the focal year. The points that are not shaded reflect years inwhich the coefficient ratio fell below

0.01, indicating that the variable was effectively removed from themodel through regularization.

toward zero when the variable does not contribute to predictive performance). This is different

than characterizing the sign or shape of the relationship between the features and the dependent

variable (i.e., marginal effects). For a flexible approach to characterizing marginal effects in

complex statistical models, we refer readers to the partial derivative methodology proposed by

Beck, King, and Zeng (2000).

Considering now the variable effects presented in Figures 5–7, we see several important

broad themes when considered in the context of the established literature on international

conflict. We consider the variables that perform well to be those that are consistently selected

by the regularization procedure (i.e., are shaded points in the plots), and exhibit coefficient

ratios near or above one. The variables that perform well include Flow (i.e., the product of

sender initiationspreviously sent and recipient initiationspreviously received),memory, common

community membership, contiguity, and shared IGO membership. Notably, most of the best

performing predictive features are dependence effects, not exogenous covariates. In addition,

many of the covariates common in the conflict literature are either rarely or never selected by

the regularizationmethod. Exogenous variables that are regularly kicked out of themodel include

trade dependence, defensive alliances, major power dyad, CINC ratio, and joint democracy.
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Figure6.Variableeffects asmeasuredbyabs(elasticnetβ )/abs(logitβ ).When thisquantity is high, elastic net
has not penalized the coefficient down and the variable can be said to be a stronger contributor to predictive

performance. The ratios from the models based on a five-year lagged interval are in black, and those based

ona ten-year lagged interval are in gray. To smooth the lines,wedepict rollingmeansover a three-year period

centered at the focal year. The points that are not shaded reflect years inwhich the coefficient ratio fell below

0.01, indicating that the variable was effectively removed from themodel through regularization.

These patterns raise important implications for understanding and predicting international

conflict. For nearly three decades, the quantitative study of conflict has been focused almost

exclusively on the problem of understanding conflict (or the let lack thereof) on the basis of state

and/or state-dyadattributes (i.e., exogenouscovariates).Our results showthat thedynamicsof the

interweaving systemofdyadic conflictsmaybe just as important, if notmore, inunderstanding the

initiation of conflict. At the very least, our results serve as a call to scholars of international conflict

to develop a theoretically informed model of conflict system dynamics with which to compare

and/or integrate conventional covariate-based explanatory models.

6 Conclusion

We argue that predictive analysis, though it is statistically distinct from explanatory analyses, is a

valuable tool for building explanatory models. We have shown that predictive analyses can be

used to set benchmarks: to measure how much we know about an outcome, and to measure

the improvement that a new analysis offers over its predecessors. We have further shown how

predictive analysis can lead to insights, such as the length of the memory process involved in

international conflict, that we can use it to understand the individual contributions of variables of
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Figure7.Variable effects asmeasuredbyabs(elastic netβ )/abs(logitβ ).When this quantity is high, elastic net
has not penalized the coefficient down and the variable can be said to be a stronger contributor to predictive

performance. The ratios from the models based on a five-year lagged interval are in black, and those based

ona ten-year lagged interval are in gray. To smooth the lines,wedepict rollingmeansover a three-year period

centered at the focal year. The points that are not shaded reflect years inwhich the coefficient ratio fell below

0.01, indicating that the variable was effectively removed from themodel through regularization.

interest, and that statistical significance does not necessarily imply that a variable is an important

predictor.

Our predictive exercise yields several interesting and compelling results. Ultimately, these

results suggest that conflict is a long-memory process, that the simplest predictive algorithm,

elastic net, is the most effective, that models with exogenous covariates alone generally perform

worse than models based solely on the outcome variable, and that combined network-covariate

models often do not provide a substantial improvement in predictive ability over the outcome-

onlybenchmarkmodel. Lastly,wesee that several variables thatarewell established in theconflict

literature contribute little to the prediction of conflict.

We propose that predictive modeling is a promising means by which to enhance the study of

political processes, particularly, though not exclusively, those for which we are unable to conduct

controlled experiments or even use causal tools for observational data. In international politics

for instance, one cannot experiment on conflict processes and the interconnectedness of states

in the system precludes the use of matching techniques for causal inference (which require strict

independenceassumptions toproducevalidestimates). But international relationsdoesnot stand

alonewith this problem; such situations occur frequently in American and comparative politics as
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well. In such cases especially, predictive modeling is a big and powerful tool that is too often left

in the box.
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