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Validation

Since the ultimate goal of supervised learning is to find 

generalizable patterns of association, models must be 

selected based on their ability to generate good out-of-

samples predictions (i.e., good predictions on the test-

set)

However, it is impossible to evaluate a model's performance 

on the universe of unsampled test documents (i.e., you do 

not know by definition their “true” class-labels of the 

documents in the test-set after all!), so an approximate 

measure of performance must be devised



Validation

Supervised methods are designed to automate the hand 

coding of documents into categories as we have already 

noticed

If a method is performing well, it will directly replicate the 

hand coding. If it performs poorly, it will fail to replicate the 

coding – instead introducing serious errors

This clear objective implies a clear standard for evaluation: 

comparing the output of machine coding to the output of 

hand coding. From here the idea of validation!



Validation

The ideal validation procedure would divide the data into 

three subsets

1. Initial model fitting would be performed on the training-set

2. Once a final model is chosen, a second set of hand-coded 

documents - the validation set - would be used to assess 

the performance of the model

3. The final model would then be applied to the test to 

complete the classification



Validation

This approach to validation is difficult to apply in most 

settings. But cross-validation (also called: K-fold 

validation) can be used to replicate this ideal procedure 



Validation

In K-fold cross-validation, the training set is randomly 

partitioned into some groups (say two: K1 and K2)

For each group, the first model is trained on K1, then applied 

to the K2 to assess performance; similarly a model is 

trained on the K2 and then applied to K1 to assess 

performance

Then you take the average across the results you get in the 

two scenarios



Validation

And if you want to run a K-fold cross-validation with K 

larger than 2? 

The algorithm is as follow:

1. Randomly split the data set into k-subsets (or k-fold) (for 

example 5 subsets)

2. Reserve one subset and train the model on all other subsets 

(4 in this case)

3. Test the model on the reserved subset and record the 

prediction error

4. Repeat this process until each of the k subsets has served 

as the test set

5. Compute the average of the k recorded errors. This is called 

the cross-validation error serving as the performance 

metric for the model



Validation

So, for example, with K-fold cross-validation=5… 
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Validation

How to choose right value of k?

Lower value of k is more biased and hence undesirable. On 

the other hand, higher value of k is less biased, but can 

suffer from large variability

In practice, one typically performs k-fold cross-validation 

using k = 5 or k = 10, as these values have been shown 

empirically to yield test error rate estimates that suffer 

neither from excessively high bias nor from very high 

variance



Validation

REMEMBER: Cross-validation is the only way to 

control if the ML algorithm you are using is doing a 

good job or not (unless you are ready to believe in that 

by fiat)!

Moreover, cross-validation avoids overfitting by 

focusing on out-of-sample prediction and selects the 

best model for the underlying data from a set of 

candidate models



Validation

Which statistics (or performance metrics) should we use 

to assess model performance?

There are several of them, but we are going to focus on 

three metrics for individual classifiers with text-analysis



Validation

Accuracy: proportion of correctly classified documents

While of course we want this score to be as high as possible, 

it can also be important to look at the two components 

which make up that score, known as recall and precision



Validation

Recall or Sensitivity (for a category k) is a measure of 

what proportion of documents of a given category the 

algorithm correctly identified; so for example, if there 

were 10 documents of the category “positive” in the 

data set, and the algorithm correctly identified 8 of 

them, we would say that this algorithm has “recall of 0.8 

for the category positive” 

✓ given that a human coder labels a document as 

belonging to category k, what is the chance the 

machine identifies the document?



Validation

Precision or Positive Predictive Value (for a category k) 

on the other hand is a measure of how many of the 

times the algorithm identified a category were actually 

correct, as against how many times were false positives. 

In the above example, where the algorithm correctly 

identified 8 of the 10 documents as positive, perhaps 

the algorithm also miss-identified 4 other documents as 

positive - so 8 out of its 12 positive classifications were 

correct, allowing us to say that it has a “precision of 

0.667 for the category positive” 

✓ given that the machine guesses category k, what is the 

probability that the machine made the right guess?



Validation

The aggregate of the recall and precision scores for a 

category is known as the f1 score

More precisely, the traditional F-measure or balanced F-

score (f1) is the harmonic mean of precision and recall:

f1 = (2 * precision * recall) / (precision + recall)…

…where the highest level of performance (of f1) is equal to 1 

and the lowest 0 



Validation

The average of the f1 scores for all the categories is a 

reasonable rough measurement of the performance of the 

algorithm (more than accuracy alone!)

However, before using the algorithm for any serious analysis 

work, it is always advisable also to take a look at the 

precision and recall scores for individual categories - you 

may find that a category you are planning to use in your 

analysis actually has very high rate of false-positive or 

false-negative identifications, which could cause serious 

problems for your results

Let’s an example on how to compute the statistics we 

discussed up to now from the Confusion matrix



Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionBlack=
TrueB+ FalseB

TrueB

RecallBlack =
TrueB + FalseW

TrueB

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1Black =
precisionB+ recallB

2 * precisionB* recallB

Think

horizontally

Think

vertically



Performance metrics: an 
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionBlack =
800+ 100

= 0.88
800  

RecallBlack =
800+ 50

= 0.94
800

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 Black =
.88+ .94

= 0.91
2*.88*.94



Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionWhite =
TrueW+ FalseW

TrueW

RecallWhite =
TrueW + FalseB

TrueW

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1White =
precisionW + recallW

2 * precisionW * recallW

Think

horizontally

Think

vertically



Performance metrics: an 
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionWhite =
50+ 50

= 0.5
50

RecallWhite =
50+ 100

= 0.33
50

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 White=
.5+ .33

= 0.39
2*.5*.33



Performance metrics
In this example you are going to have a single Accuracy 

value=0.85

Then you could take the average of the F1 scores for the 

classes as another (and more reliable) measure of the 

performance of the algorithm

In our case: (.91+.39)/2=.65

You see the difference here between Accuracy and the 

averaged F1 score!

This difference is due that we are doing well with the Black 

class, but relative poorly with the White class

Rule-of-thumb: everytime you notice a market difference 

between Accuracy and F1 score, there are problems for 

your model!!!



Validation

For example, if there were 96 cats and only 4 dogs in the 

training-set (i.e., a very imbalanced training-set: we will 

be back on this point later on!), a particular classifier 

might classify all the observations (but one) as cats

The overall accuracy would be then…how much? 



Performance metrics: an 
example

Confusion matrix:

Accuracy =
95 + 0

95+ 4 + 1 + 0
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

Accuray seems high, but compared to a natural

benchmark (i.e., a dull algorithm that simply assigns all

the observations to the most frequent class)? 

In this case: random draw=96% of Accuracy!



Validation
Moreover, in this same circumstance, the classifier 

would have a recall rate (sensitivity) for the dog 

class equals to…? And for the cats equals to…? 

[think vertically!]



Performance metrics: an 
example

Confusion matrix:

Accuracy =
95+ 0

95 + 4 + 1 + 0
= 0.95

RecallDogs =
0 + 4

=   0
0

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

RecallCats= 9 5 + 1
=   0.989

95



Validation: another example 

with 3 categories

Here Accuracy is equal to the ratio between the sum of the 

diagonal (i.e., the sum of «True Positive») and the total number of 

observations, i.e., (5+3+11)/(5+2+3+3+2+1+11)=0.704



Validation
For each category k we can move from here

to here (example for the “cat” category)



Validation
Then:

In the case, Precision for the cat class is: 5/(5+2)=0.71

Recall for the cat class is: 5/(5+3)=0.625

f1 for the cat class is: 2*(0.625*071)/(0.625+071)=0.66

You can do the same thing for the dog and the rabbit cases, 
and then averaging across values to have a sense of the 
overall performance of your model



Validation

Depending on the application, scholars may conclude that 

the supervised method is able to sufficiently replicate 

human coders. A largely employed rule-of-thumb is getting 

accuracy>.85 for example (or f1>.75) (at least when you 

are dealing with just 2 categories)

Or, additional steps can be taken to improve accuracy, 

including trying to apply other ML algorithms or…



Validation

…Most algorithms also have a range of “hyper-parameters” 

(or “tuning parameters”) – assumptions and modifiers 

which are used to fine-tune the model and which can be 

set to different values prior to training – that can 

significantly impact performance (remember about the 

number of trees in RF)

Finding the right set of hyper-parameters for a certain task

and a specific data set is also largely a case of trial and 

error, and it can only be done once again via cross-

validation!



Validation

Some packages in R (such as Caret or h2o or the same 

Quanteda with the library quanteda.classifiers) 

provide  ways to automate this task; this is known as a 

“grid search”, allowing researchers to exhaustively search 

through every combination of a set of hyper-parameters to 

find the best performing model

This process can take a lot of time – often in the order of 

several hours for algorithms with complex sets of 

parameters – but often yields better performance than the 

default parameter set



Validation

Summing up: the purpose of cross-validation is model 

checking!

Accordingly, cross-validation allows you to:

✓ select among different machine-learning 

algorithms...(remember the No Free Lunch Theorem! 

No machine learning algorithm is always better at 

predicting new, unobserved, data points universally)

✓ ..and to identify the better hyperparameters setting for 

a given ML algorithm

As a result always run a cross-validation before classifying 

the test-set to select the best ML algorithm given your 

corpus!



Validation: a summary

Two possible routes in this regard according to how you want 

to deal with the hyper-parameters:

First route (to success…)

a) You keep the default hyper-parameters of your ML 

algorithms;

b) you run a CV on each of such ML algorithms

c) you select the one (or two) with the best performance on 

CV

d) you fine-tune the hyper-parameters on such model(s)

e) you re-run CV just on them

f) you keep the ML algorithm that performs better in the CV



Validation: a summary

Two possible routes in this regard according to how you want 

to deal with the hyper-parameters:

Second route (to success…)

a) You fine-tune the hyper-parameters on each of the your 

ML algorithms you want to test

b) you run CV on each of them

c) you keep the ML algorithm that performs better in the CV


