
Big Data Analytics

Lecture 4/B

Cross-validation

Define the corpus Preprocessing
Statistical

summaries

First Step

Second

Step

Goal

Scaling/scoring

Supervised

Unsupervised

Uknown categories

(unsupervised)

Classification

Partially known

categories

(semi-supervised)

Known categories

(supervised)

Automatic tagging

Human tagging

Reference

✓ Grimmer, Justin, and Stewart, Brandon M. (2013). Text as

Data: The Promise and Pitfalls of Automatic Content Analysis

Methods for Political Texts. Political Analysis, 21(3): 267-297

✓ Curini, Luigi, and Robert Fahey (2020). Sentiment Analysis

and Social Media. In Luigi Curini and Robert Franzese (eds.),

SAGE Handbook of Research Methods is Political Science &

International Relations, London, Sage, chapter 29

✓ Cranmer, Skyler J. and Desmarais, Bruce A. (2017) What Can

We Learn from Predictive Modeling?, Political Analysis, 25:

145-166

3

Validation

Validation

Since the ultimate goal of supervised learning is to find

generalizable patterns of association, models must be

selected based on their ability to generate good out-of-

samples predictions (i.e., good predictions on the test-

set)

However, it is impossible to evaluate a model's performance

on the universe of unsampled test documents (i.e., you do

not know by definition their “true” class-labels of the

documents in the test-set after all!), so an approximate

measure of performance must be devised

Validation

Supervised methods are designed to automate the hand

coding of documents into categories as we have already

noticed

If a method is performing well, it will directly replicate the

hand coding. If it performs poorly, it will fail to replicate the

coding – instead introducing serious errors

This clear objective implies a clear standard for evaluation:

comparing the output of machine coding to the output of

hand coding. From here the idea of validation!

Validation

The ideal validation procedure would divide the data into

three subsets

1. Initial model fitting would be performed on the training-set

2. Once a final model is chosen, a second set of hand-coded

documents - the validation set - would be used to assess

the performance of the model

3. The final model would then be applied to the test to

complete the classification

Validation

This approach to validation is difficult to apply in most

settings. But cross-validation (also called: K-fold

validation) can be used to replicate this ideal procedure

Validation

In K-fold cross-validation, the training set is randomly

partitioned into some groups (say two: K1 and K2)

For each group, the first model is trained on K1, then applied

to the K2 to assess performance; similarly a model is

trained on the K2 and then applied to K1 to assess

performance

Then you take the average across the results you get in the

two scenarios

Validation

And if you want to run a K-fold cross-validation with K

larger than 2?

The algorithm is as follow:

1. Randomly split the data set into k-subsets (or k-fold) (for

example 5 subsets)

2. Reserve one subset and train the model on all other subsets

(4 in this case)

3. Test the model on the reserved subset and record the

prediction error

4. Repeat this process until each of the k subsets has served

as the test set

5. Compute the average of the k recorded errors. This is called

the cross-validation error serving as the performance

metric for the model

Validation

So, for example, with K-fold cross-validation=5…
T

ra
in

in
g
-s

e
t

Validation

How to choose right value of k?

Lower value of k is more biased and hence undesirable. On

the other hand, higher value of k is less biased, but can

suffer from large variability

In practice, one typically performs k-fold cross-validation

using k = 5 or k = 10, as these values have been shown

empirically to yield test error rate estimates that suffer

neither from excessively high bias nor from very high

variance

Validation

REMEMBER: Cross-validation is the only way to

control if the ML algorithm you are using is doing a

good job or not (unless you are ready to believe in that

by fiat)!

Moreover, cross-validation avoids overfitting by

focusing on out-of-sample prediction and selects the

best model for the underlying data from a set of

candidate models

Validation

Which statistics (or performance metrics) should we use

to assess model performance?

There are several of them, but we are going to focus on

three metrics for individual classifiers with text-analysis

Validation

Accuracy: proportion of correctly classified documents

While of course we want this score to be as high as possible,

it can also be important to look at the two components

which make up that score, known as recall and precision

Validation

Recall or Sensitivity (for a category k) is a measure of

what proportion of documents of a given category the

algorithm correctly identified; so for example, if there

were 10 documents of the category “positive” in the

data set, and the algorithm correctly identified 8 of

them, we would say that this algorithm has “recall of 0.8

for the category positive”

✓ given that a human coder labels a document as

belonging to category k, what is the chance the

machine identifies the document?

Validation

Precision or Positive Predictive Value (for a category k)

on the other hand is a measure of how many of the

times the algorithm identified a category were actually

correct, as against how many times were false positives.

In the above example, where the algorithm correctly

identified 8 of the 10 documents as positive, perhaps

the algorithm also miss-identified 4 other documents as

positive - so 8 out of its 12 positive classifications were

correct, allowing us to say that it has a “precision of

0.667 for the category positive”

✓ given that the machine guesses category k, what is the

probability that the machine made the right guess?

Validation

The aggregate of the recall and precision scores for a

category is known as the f1 score

More precisely, the traditional F-measure or balanced F-

score (f1) is the harmonic mean of precision and recall:

f1 = (2 * precision * recall) / (precision + recall)…

…where the highest level of performance (of f1) is equal to 1

and the lowest 0

Validation

The average of the f1 scores for all the categories is a

reasonable rough measurement of the performance of the

algorithm (more than accuracy alone!)

However, before using the algorithm for any serious analysis

work, it is always advisable also to take a look at the

precision and recall scores for individual categories - you

may find that a category you are planning to use in your

analysis actually has very high rate of false-positive or

false-negative identifications, which could cause serious

problems for your results

Let’s an example on how to compute the statistics we

discussed up to now from the Confusion matrix

Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionBlack=
TrueB+ FalseB

TrueB

RecallBlack =
TrueB + FalseW

TrueB

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1Black =
precisionB+ recallB

2 * precisionB* recallB

Think

horizontally

Think

vertically

Performance metrics: an
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionBlack =
800+ 100

= 0.88
800

RecallBlack =
800+ 50

= 0.94
800

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 Black =
.88+ .94

= 0.91
2*.88*.94

Performance metrics

Confusion matrix:

Accuracy =
TrueBlack + TrueWhite

TrueBlack + TrueWhite + FalseBlack + FalseWhite

PrecisionWhite =
TrueW+ FalseW

TrueW

RecallWhite =
TrueW + FalseB

TrueW

Actual label
Classification (algorithm) Black White
Black
White

True Black
False White

False Black
True White

f1White =
precisionW + recallW

2 * precisionW * recallW

Think

horizontally

Think

vertically

Performance metrics: an
example

Confusion matrix:

Accuracy =
800 + 50

800 + 50 + 100 + 50
= 0.85

PrecisionWhite =
50+ 50

= 0.5
50

RecallWhite =
50+ 100

= 0.33
50

Actual label
Classification (algorithm) Black White
Black
White

800
50

100
50

f1 White=
.5+ .33

= 0.39
2*.5*.33

Performance metrics
In this example you are going to have a single Accuracy

value=0.85

Then you could take the average of the F1 scores for the

classes as another (and more reliable) measure of the

performance of the algorithm

In our case: (.91+.39)/2=.65

You see the difference here between Accuracy and the

averaged F1 score!

This difference is due that we are doing well with the Black

class, but relative poorly with the White class

Rule-of-thumb: everytime you notice a market difference

between Accuracy and F1 score, there are problems for

your model!!!

Validation

For example, if there were 96 cats and only 4 dogs in the

training-set (i.e., a very imbalanced training-set: we will

be back on this point later on!), a particular classifier

might classify all the observations (but one) as cats

The overall accuracy would be then…how much?

Performance metrics: an
example

Confusion matrix:

Accuracy =
95 + 0

95+ 4 + 1 + 0
= 0.95

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

Accuray seems high, but compared to a natural

benchmark (i.e., a dull algorithm that simply assigns all

the observations to the most frequent class)?

In this case: random draw=96% of Accuracy!

Validation
Moreover, in this same circumstance, the classifier

would have a recall rate (sensitivity) for the dog

class equals to…? And for the cats equals to…?

[think vertically!]

Performance metrics: an
example

Confusion matrix:

Accuracy =
95+ 0

95 + 4 + 1 + 0
= 0.95

RecallDogs =
0 + 4

= 0
0

Actual label
Classification (algorithm) Cats Dogs
Cats
Dogs

95
1

4
0

RecallCats= 9 5 + 1
= 0.989

95

Validation: another example

with 3 categories

Here Accuracy is equal to the ratio between the sum of the

diagonal (i.e., the sum of «True Positive») and the total number of

observations, i.e., (5+3+11)/(5+2+3+3+2+1+11)=0.704

Validation
For each category k we can move from here

to here (example for the “cat” category)

Validation
Then:

In the case, Precision for the cat class is: 5/(5+2)=0.71

Recall for the cat class is: 5/(5+3)=0.625

f1 for the cat class is: 2*(0.625*071)/(0.625+071)=0.66

You can do the same thing for the dog and the rabbit cases,
and then averaging across values to have a sense of the
overall performance of your model

Validation

Depending on the application, scholars may conclude that

the supervised method is able to sufficiently replicate

human coders. A largely employed rule-of-thumb is getting

accuracy>.85 for example (or f1>.75) (at least when you

are dealing with just 2 categories)

Or, additional steps can be taken to improve accuracy,

including trying to apply other ML algorithms or…

Validation

…Most algorithms also have a range of “hyper-parameters”

(or “tuning parameters”) – assumptions and modifiers

which are used to fine-tune the model and which can be

set to different values prior to training – that can

significantly impact performance (remember about the

number of trees in RF)

Finding the right set of hyper-parameters for a certain task

and a specific data set is also largely a case of trial and

error, and it can only be done once again via cross-

validation!

Validation

Some packages in R (such as Caret or h2o or the same

Quanteda with the library quanteda.classifiers)

provide ways to automate this task; this is known as a

“grid search”, allowing researchers to exhaustively search

through every combination of a set of hyper-parameters to

find the best performing model

This process can take a lot of time – often in the order of

several hours for algorithms with complex sets of

parameters – but often yields better performance than the

default parameter set

Validation

Summing up: the purpose of cross-validation is model

checking!

Accordingly, cross-validation allows you to:

✓ select among different machine-learning

algorithms...(remember the No Free Lunch Theorem!

No machine learning algorithm is always better at

predicting new, unobserved, data points universally)

✓ ..and to identify the better hyperparameters setting for

a given ML algorithm

As a result always run a cross-validation before classifying

the test-set to select the best ML algorithm given your

corpus!

Validation: a summary

Two possible routes in this regard according to how you want

to deal with the hyper-parameters:

First route (to success…)

a) You keep the default hyper-parameters of your ML

algorithms;

b) you run a CV on each of such ML algorithms

c) you select the one (or two) with the best performance on

CV

d) you fine-tune the hyper-parameters on such model(s)

e) you re-run CV just on them

f) you keep the ML algorithm that performs better in the CV

Validation: a summary

Two possible routes in this regard according to how you want

to deal with the hyper-parameters:

Second route (to success…)

a) You fine-tune the hyper-parameters on each of the your

ML algorithms you want to test

b) you run CV on each of them

c) you keep the ML algorithm that performs better in the CV

